
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,

Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D6.10 – Sandboxes for FinTech and

InsuranceTech Innovators - I

Revision Number 3.0

Task Reference T6.5

Lead Beneficiary ENG

Responsible Domenico Messina - Susanna Bonura

Partners Participating partners in Task according to DOA

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-02-28

Delivered Date 2021-03-03

Internal Reviewers GRA,FBK

Quality Assurance CCA

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under Grant

Agreement no 856632

Ref. Ares(2021)1613086 - 03/03/2021

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 57

Contributing Partners
Partner Acronym Role1 Author(s)2

ENG Lead Beneficiary Domenico Messina – Susanna Bonura

HPE Contributor

NOVA Contributor

JRC Contributor

ATOS Contributor

SILO Contributor

WEA Contributor

GEN Contributor

GFT Contributor

GRA Internal Reviewer

FBK Internal Reviewer

CCA Quality Assurance

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 57

Revision History
Version Date Partner(s) Description

0.1 2020-10-12 ENG and contrib.

partners

Table of Contents

0.2 2020-10-26 ENG, NOVA, HPE Contributions to section 2

0.3 2020-11-30 JRC, ATOS, SILO, WEA,

GEN

Contributions to section 3

0.4 2020-12-18 ENG,HPE,GFT Updated contributions to section 3

0.5 2021-01-15 ENG,HPE,GFT Initial contribution to section 4

0.4 2021-02-01 ENG and contrib.

partners

Updated contribution to section 4

0.5 2021-02-05 ENG and contrib.

partners

Updated contributions to section 2

0.6 2021-02-12 ENG and contrib.

partners

Updated contributions to section 3

0.7 2021-02-15 ENG and contrib.

partners

Updated contributions to section 4

0.8 2021-02-18 ENG,HPE,GFT Updated ToC

0.9 2021-02-19 ENG Contribution to section 1

1.0 2021-02-22 ENG First Version ready for Internal Peer Review

1.1 2021-24-24 HPE Overall review

2.0 2021-01-01 GRA,FBK,CCA Version after Internal Peer Review and QA

3.0 2021-03-03 ENG Version for Submission

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 57

Executive Summary
Within the INFINITECH Work Package 6 - Tailored Sandboxes and Testbeds for Experimentation and

Validation, this document describes the first of the three expected results of the task T6.5 -

FinTech/InsuranceTech Testbed Establishment and Customization.

First of all it provides an overview of a generic on-premise environment, some considerations about how it

differs from a cloud-provider environment, and moves its focus onto the specific machines provided by NOVA

that will be used for the first approach to testbed tailoring on-premise within the INFINITECH project. A

minimal and a recommended set of requirements are provided in order to get a “just fine” environment

versus a “high availability” and recommended environment, documenting how to initialize and configure

them to get started with a complete INFINITECH development experience.

Then, this document presents the FinTech/InsuranceTech pilots and their sandbox tailoring, but not as an

end in itself. The per-pilot process is documented as a guideline to be adopted by all future cases, and it

consists of three steps: (i) the definition of the objective and the overview of the pilot that is a piece of

information that provides the main idea behind the pilot at a glance; (ii) the first stage component

deployment which contains information about how the software and its dependencies (I.e. framework used,

3rd party software, etc...) are currently built and deployed, their requirements and compatibilities, their

condition in the network (I.e. the ports that a certain service listens to); (iii) the TO-BE strategy mapping

which consumes all the information provided in the previous steps, combines them with the inputs coming

from the deliverable, and produces the objects and the software configuration files, described in the

document in an easily readable diagram form, for the target environment (I.e. Kubernetes objects and

templates). This bundle of artifacts will generate the sandboxes that will be ready to be used during the whole

development process. Finally, the results of the work done in the deliverable and the next steps foreseen for

the related tasks are summarized.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 57

Table of Contents

1 Introduction.. 10

1.1 Objective of the Deliverable ... 10

1.2 Insights from other Tasks and Deliverables .. 11

1.3 Structure ... 12

2 INFINITECH System Design for shared testbed ... 13

2.1 Shared testbed overview .. 13

2.2 Minimal requirements and recommended requirements .. 14

2.3 Shared testbed setup.. 15

2.3.1 Rancher installation .. 20

2.3.2 Cluster Operations .. 21

2.3.3 Cluster Configuration .. 22

2.4 Configuration management adaptation ... 23

2.5 Handling hybrid scenarios .. 25

3 Sandboxes for FinTech and InsuranceTech Innovators... 27

3.1 Mapping approach ... 27

3.2 Pilot#2 - Real-time risk assessment in Investment Banking .. 30

3.2.1 Objectives, sandbox and technologies overview .. 30

3.2.2 First stage components deployment and Local testbed system description 32

3.2.3 TO-BE strategy and mapping according the INFINITECH way ... 33

3.3 Pilot#11 - Personalized insurance products based on IoT connected vehicles 35

3.3.1 Objectives, sandbox and technologies overview .. 35

3.3.2 First stage components deployment .. 38

3.3.3 TO-BE strategy and mapping according to the INFINITECH way ... 39

3.4 Pilot#12 - Real World Data for Novel Health-Insurance products .. 40

3.4.1 Objectives, sandbox and technologies overview .. 40

3.4.2 First stage components deployment .. 43

3.4.3 TO-BE strategy and mapping according the INFINITECH way ... 43

3.5 Pilot#13 - Alternative/automated insurance risk selection - product recommendation for SME ... 45

3.5.1 Objectives, sandbox and technologies overview .. 45

3.5.2 First stage components deployment .. 48

3.5.3 TO-BE strategy and mapping according to the INFINITECH way ... 48

3.6 Pilot#14 - Big Data and IoT for the Agricultural Insurance Industry .. 50

3.6.1 Objectives, sandbox and technologies overview .. 50

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 57

3.6.2 First stage components deployment .. 53

3.6.3 TO-BE strategy and mapping according to the INFINITECH way ... 53

3.7 Shared frameworks and dependency recurrency ... 54

4 Conclusions .. 56

Appendix A: Literature ... 57

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 57

List of Figures
Figure 1 - INFINITECH Work Breakdown Structure ... 11

Figure 2 – Parallelism between Testbed and Data Center .. 13

Figure 3 - Shared testbed configuration ... 14

Figure 4 - vSphere VM Template .. 15

Figure 5 - Cloning a VM Template .. 16

Figure 6 - Automation tools Flow ... 16

Figure 7 - Automated K8S cluster creation with Rancher ... 19

Figure 8 - Layout of Sandboxes in NOVA Testbed... 20

Figure 9 - Rancher operation .. 21

Figure 10 - Different flow for closed-source projects ... 24

Figure 11 - Deployment Interactions .. 24

Figure 12 - Sidecar deployment .. 25

Figure 13 - Overall mapping workflow ... 28

Figure 14 – NOVA shared testbed namespaces .. 28

Figure 15 - Pilot #11 High Level Architecture ... 38

Figure 16 - Pilot #12 Real world data for novel health insurance products overview 41

Figure 17 - Pilot #13 overall architecture ... 45

Figure 18 – Dependencies recurrency among pilots .. 55

List of Tables
Table 1 – Pilot #2 technologies overview ... 31

Table 2 - Pilot #2 mapping with INFINITECH Reference Architecture Group .. 33

Table 3 - Pilot #2 mapping with Kubernetes objects .. 34

Table 4 - Pilot #11 technologies overview .. 36

Table 5 - Pilot #11 mapping with INFINITECH Reference Architecture Group .. 39

Table 6 – Pilot #11 mapping with Kubernetes objects ... 40

Table 7 - Pilot #12 technologies overview .. 42

Table 8 - Pilot #12 mapping with INFINITECH Reference Architecture Group .. 43

Table 9 – Pilot #12 mapping with Kubernetes objects ... 44

Table 10 - Pilot #13 technologies overview .. 47

Table 11 - Pilot #13 mapping with INFINITECH Reference Architecture Group .. 48

Table 12 – Pilot #13 mapping with Kubernetes objects ... 49

Table 13 - Pilot #14 technologies overview .. 52

Table 14 - Pilot #14 mapping with INFINITECH Reference Architecture Group .. 53

Table 15 – Pilot #14 mapping with Kubernetes objects ... 54

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 57

Abbreviations/Acronyms
Abbreviation Definition

AgI Agricultural Insurance

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

AWS EBS Amazon Web Services Elastic Block Store

AWS EKS Amazon Web Services Elastic Kubernetes Service

AWS ELB Amazon Web Services Elastic Load Balancer

AWS KMS Key Management Service

BP Blueprint

CICD Continuous Integration Continuous Development

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

DNS Dynamic Name Resolution

ENI Elastic network interfaces

EKS Elastic Kubernetes Service

EO Earth Observation

GKS Google Kubernetes Engine

HA High Availability

HCL Hashi Corp Configuration Language

HTAP Hybrid Transactional and Analytical Processing

IAM Identity and Access Management

IP Internet Protocol

K3S Lightweight Kubernetes

K8S Kubernetes

ML/DL Machine Learning Deep Learning

PoC Proof of Concept

PV Persistent Volume

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 57

PVC Persistent Volume Claim

RBAC Role-Based Access Control

RKE Rancher Kubernetes Engine

SHARP Smart, Holistic, Autonomy, Personalized and Regulatory Compliance

SSH Secure Socket Shell

YAML YAML Ain't Markup Language

VaR Value-at-Risk

VM Virtual Machine

VPC Virtual Private Cloud

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 57

1 Introduction
A key innovation of the INFINITECH project is the implementation of the means for the provisioning and

configuration if tailored sandboxes over the project’s testbeds, which will comprise specific data sources,

ML/DL algorithms, APIs and regulatory compliance algorithms. The INFINITECH sandboxes/testbeds aim to

facilitate innovators in their efforts to produce BigData/IoT applications that disrupt the sector based on their

SHARP properties.

Within the WP6 - Tailored Sandboxes and Testbeds for Experimentation and Validation, task T6.5 aims at

establishing and making available one testbed to FinTech/InsuranceTech enterprises of the consortium for

their pilots.

This document, D6.10 - Sandboxes for FinTech and InsuranceTech Innovators, is the first result of T6.5 and

represents the reference guide of how to set up a testbed on-premise for hosting the software of the FinTech

and InsuranceTech firms involved in the INFINITECH project. The on-premise testbed will run the cloud-native

artifacts developed according to the INFINITECH software development process (please see D6.4 for more

details) and it will be configured in order to match the ease of management of the equivalent cloud provider

counterpart as much as possible.

"Cloud Nativeness” is, by definition, the purpose of building software and services that are capable of running

in cloud environments by design. A cloud-native Application differs from its legacy equivalent not only from

the fact that it runs within a sandboxed execution environment that exploits a containerization technology,

but the whole development process is tailored to produce an artifact with such characteristics. There are

many other benefits to preferring this kind of approach over the production of a legacy application: the

horizontal scaling capability, the adoption of a microservice architecture, the support of the deployment

strategy that best suits the needs.

Within this context, there's a very well-known challenge: what if one has a cloud native application and wants

to deploy it in an on-premise environment instead of in a cloud provider’s ecosystem? Even if there are no

changes under the intrinsic configuration of the application, there can be a lot of differences in terms of

networking and persistence migrating from the cloud to the premise. There may be a lack of a lot of services

offered by the providers “out of the box”, such as the load balancer, the automatic management of DNS

records, a flexible persistence provisioner, etc.

1.1 Objective of the Deliverable

The testbed tailoring mechanism is an important solution that supports the sandboxed software

development process under the umbrella of the INFINITECH project, from now the “INFINITECH way”.

The objective of this deliverable is to document the effectiveness of this testbed tailoring mechanism as well

as its suitability for the on-premise environments taking into account the needs of the FinTech and

InsuranceTech presences within the INFINITECH consortium. This document is not just a per pilot report of

sandbox construction per se, but it’s more a reference guide for all those individuals who want to participate

and exploit the ecosystem of INFINITECH to be ready to develop, build and test new artifacts for the platform

into dedicated execution environments. The NOVA infrastructure will be the host of the first attempt at an

on-premise environment federation to the INFINITECH approach. This infrastructure will run five sandboxes,

one for each participant pilot. Having these five independent (but not isolated) workflows will be helpful to

analyze which are the most common frameworks and dependencies the developers need to have in place to

complete all the integration tests of the novel artifacts and to allow them to run correctly as expected.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 57

1.2 Insights from other Tasks and Deliverables

WP6 has been contributing to different WPs and deliverables and in turn relies on inputs coming from other

WPs, as shown in the following figure.

Figure 1 - INFINITECH Work Breakdown Structure

Within T6.5 the deliverables submitted until now from WPs3-4-5 have been taken into account.

In addition, the following deliverables within the WP6 are key inputs to this document:

• D6.1 - Testbeds Status and Upgrades, which contains the initial analysis for the current status of the

existing partners’ infrastructure (hardware & software) that will be used as the basis for all the

testbeds to host the Pilots of the INFINITECH Project.

• D6.4 - Tools and Techniques for Tailored Sandboxes and Management of Datasets – I, which describes

the preliminary results of INFINITECH WP6 Tasks T6.2 “Mechanisms and Tools for Tailored Sandboxes

Provision and Configuration” and T6.3 “Integrated Management of Testbeds' Datasets”.

It is worth noticing that there is a relation between this deliverable and the deliverable on the Sandboxes in

Incumbent Testbeds (D6.7) since they share the same goals but from different perspectives.

Finally, the progress of task T6.5 (together with the other tasks in WP6) is a key driver of the INFINITECH work

package WP7, which is focused on the Large Pilots Operations and Stakeholders Evaluation of the proposed

Financial and Insurance Services.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 57

1.3 Structure

In addition to a first and introductory section that provides the context and explains the objectives of the

deliverable, this document consists of the following sections:

• Section 2 provides an overview of how to initialize and configure the NOVA testbed to get started

with the complete INFINITECH testbed establishment.

• Section 3 is related to the FinTech/InsuranceTech pilots and their sandbox tailoring. The pilots to be

hosted within the NOVA testbed are pilots 2, 11, 12, 13, 14.

• Section 4 summarizes the results of the work done in the deliverable and the next steps foreseen for

the related tasks.

• Section “Appendix A: Literature” provides details about all the cited work.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 57

2 INFINITECH System Design for shared testbed

2.1 Shared testbed overview

Deliverable “D6.4 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - I” gives a

detailed description of the scenarios regarding all of the envisioned INFINITECH testbeds. In this section, we

recall the design of the shared Data Center hosted by the partner NOVA, which will be established and

provisioned in order to support the experimentation of the five (at the time of writing) FinTech and

InsuranceTech innovators pilots within the consortium.

We remind readers that in INFINITECH the set of hardware resources in a data center (like storage, computing

resources and network) will be considered as a testbed, as shown in the following picture:

Figure 2 – Parallelism between Testbed and Data Center

In general, we envision that each INFINITECH pilot will have one or more Use Cases (composed of one or

more pilot Applications that, individually, should be composed of one or more INFINITECH microservices). In

our vision, each Use Case will be a Sandbox provisioned by the leverage of Kubernetes Namespaces [1].

In Kubernetes (K8S) we use Namespaces to obtain separation between Kubernetes objects. They are a logical

grouping of a set of Kubernetes objects to whom it’s possible to apply some policies, in particular:

• Quote sets the limits on how many hardware resources can be consumed by all the objects.

• Network defines if the namespace can be accessed or can get access to other Namespaces, in other

words, if the Namespace is isolated or accessible.

Network segregation is obtained via network policies: such policies are enforced by Cilium CNI (Container

Network Interface) configurations, and the only intra-cluster communication allowed will be through the

following namespaces: “devops” to enable application deployments and “kube-system” for cluster

maintenance [2].

On top of Cilium, a networking and security observability platform called Hubble [3] is available and its main

goal is to support network troubleshooting and monitoring.

In the Shared Testbed provided within the NOVA data center, one Kubernetes cluster for each pilot will

be provided, as shown in the following picture:

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 57

Figure 3 - Shared testbed configuration

2.2 Minimal requirements and recommended requirements

As mentioned in the previous section, INFINITECH testbeds will rely on Kubernetes to orchestrate containers

and to manage the resources of the nodes conveniently. According to the number of nodes available and the

amount of dedicated resources, a Kubernetes cluster can be initialized using a low-end configuration (but

still conforming to the kubernetes best practices) or as a production-ready configuration with a high available

topology.

In the Kubernetes ecosystem, there are two types of nodes: worker node and control plane node. Worker

nodes are the nodes that run all the user workload pods, while control-plane nodes are service nodes that

manage the whole cluster in terms of scheduling, API access, health, and so on. By default, the cluster doesn’t

schedule user pods on the control-plane node for security reasons, therefore, if the administrator has to

initialize a Kubernetes cluster with a single-node (i.e., a development machine), this workflow must explicitly

configure the node to accept workload. For the low-end testbed, at least the following requirements are

needed:

⚫ One or more machines running a deb/rpm-compatible Linux OS; for example, Ubuntu or CentOS.

⚫ 2 GB or more RAM per machine.

⚫ At least 2 CPUs on the machine used as a control-plane node.

⚫ Full network connectivity among all machines in the cluster. A public or a private network can be used.

For a High Availability cluster, which is recommended for production and fault-tolerant environments, several

nodes can be configured in order to have a proper set of control-plane nodes and worker nodes which would

guarantee a high level of resilience whenever accidents occur. Further details are available in the official

Kubernetes documentation at https://kubernetes.io/docs/setup/.

In the specific case of the NOVA infrastructure, three nodes will be available and all three nodes will have the

control-plane and worker roles within the cluster with the following characteristics:

• CPU: 4x Intel Xeon-G 6238R (Total: 112 Cores / 224 vCores)

• Memory: 1 TB

https://kubernetes.io/docs/setup/

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 57

• GPU: 1x NVIDIA Tesla M10 Quad GPU (2560 CUDA Cores)

• Storage: (6 to 12 TB) x 3

2.3 Shared testbed setup

The purpose of this section is to describe the process to recreate the Blueprint (BP) testbed for a specific

INFINITECH Pilot on a bare-metal environment hosted by the NOVA infrastructure in terms of all software

layers depicted in Figure 3 - Shared testbed. Such a process should be automated as much as possible, but

full automation is complicated as before replicating a K8S cluster from Amazon Web Services (AWS) to a bare-

metal environment, we need to install and configure all software layers beneath K8S. In the rest of the section

we will explore a possible way to automate this process.

Let’s focus our attention on a single on-premise Kubernetes Cluster. The first assets we need are the Linux

systems which are the baseline of where Kubernetes will be installed. Each Linux system will be a VMware

[4] Virtual Machine located on a VMware Cluster: in order to simplify as much as possible, we assume starting

with a certain number of vSphere ESXi [5] ready to install our virtual machines.

Before going more into detail about the process, we want to recall some concepts about vSphere. The

following picture depicts the concept of vSphere VM template:

Figure 4 - vSphere VM Template

A VM template on vSphere is like a “package”, and it is composed by the VM image, the VM disks, the Virtual

Devices and all the VM settings. A vSphere VM template can be cloned to create a new virtual machine

instance as shown in the following picture:

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 57

Figure 5 - Cloning a VM Template

The idea is to have a certain number of VM templates in the datastore (the virtual storage on VMware) and

to clone them when it is necessary to have a running Virtual Machine.

The intention is to have a VM running in two phases:

1. VM Template creation: VM templates are stored in the datastore (the virtual storage on VMware).

2. VM template cloning to obtain a running virtual machine.

The problem now is to find a way to automate these two phases.

Phase one will be automated using a tool called Vagrant [6], while phase two will be automated using a tool

called Terraform [8]. The process is depicted in the next picture.

Figure 6 - Automation tools Flow

To fully understand the features of Vagrant and Terraform it is possible to access the product website (see

[6]and [8]. A brief overview of these tools follows.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 57

Vagrant [6] is an automation tool for creating and managing virtual machine environments in a single

workflow. It can work with different kinds of hypervisors like Oracle Virtual Box [9], VMware workstation

[10], vSphere [5] and others. It can manage the whole lifecycle of the virtual machines, without interacting

directly with the specific hypervisor. The Vagrant files are where the instructions on how to build a specific

virtual machine are located. The syntax of a Vagrant file is Ruby [11] but usually is not necessary to have any

programming language knowledge to configure Vagrant.

Vagrant can work with VMware vSphere and is able to automate the creation of the vSphere VM template,

so it solves the first deployment phase we have previously described.

Terraform [8] is an open-source infrastructure and it works as a code software tool that provides a consistent

CLI workflow to manage hundreds of cloud services. Terraform codifies cloud APIs into declarative

configuration files. It is a tool for infrastructure provisioning capable of building an infrastructure setup as

code.

It works with many cloud providers: AWS, Google, Azure, and others. In the case of AWS for example it can

build any EC2 [12] instance from an Amazon Machine Image (AMI) available in the marketplace and can

configure the software on the instance using custom data. For Terraform running and building we need a

resource file (.tf) [8] that describes all the infrastructure objects we want to build on a specific provider. The

language used in this file is called Hashi Corp Configuration Language (HCL) [13] and is the “code” that

describes the architecture.

Another interesting feature of Terraform is the concept of “Plan, Apply and Destroy”: when the resource file

(.tf) is ready it is possible to run a preview through the command terraform plan, and Terraform will

provide some insights into what this specific “.tf” is going to build, such as a list of resources and settings; at

this point, it is possible to carefully check the plan preview and eventually proceed with the build running the

command terraform apply that starts the infrastructure build process. Finally, the command terraform

destroy will delete the infrastructure.

In addition to working with a Cloud Provider, Terraform is also compatible with vSphere VMware products

like ESXi and vCenter. In particular, it can deploy Virtual Machines starting from VM templates, so it solves

the second phase automation problem previously discussed. To better understand what Terraform files look

like, we attach two files necessary to clone a VM on vSphere (the complete example could be found at [14]).

#cat terraform.tfvars

vsphere_user = "terraform_user@vsphere.local"

vsphere_password = "SuperSecretPassword"

vsphere_server = "192.168.100.50"

vsphere_datacenter = "datacenter"

vsphere_datastore = "datastore-1"

vsphere_resource_pool = "cluster/Resources"

vsphere_network = "VM Network"

vsphere_virtual_machine_template = "centos_7_template"

vsphere_virtual_machine_name = "terraform-vsphere-clone-test"

#cat main.tf

provider "vsphere" {

 user = "${var.vsphere_user}"

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 57

 password = "${var.vsphere_password}"

 vsphere_server = "${var.vsphere_server}"

 allow_unverified_ssl = true

}

data "vsphere_datacenter" "dc" {

 name = "${var.vsphere_datacenter}"

}

data "vsphere_datastore" "datastore" {

 name = "${var.vsphere_datastore}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_resource_pool" "pool" {

 name = "${var.vsphere_resource_pool}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_network" "network" {

 name = "${var.vsphere_network}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_virtual_machine" "template" {

 name = "${var.vsphere_virtual_machine_template}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

resource "vsphere_virtual_machine" "cloned_virtual_machine" {

 name = "${var.vsphere_virtual_machine_name}"

 resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

 datastore_id = "${data.vsphere_datastore.datastore.id}"

 num_cpus = "${data.vsphere_virtual_machine.template.num_cpus}"

 memory = "${data.vsphere_virtual_machine.template.memory}"

 guest_id = "${data.vsphere_virtual_machine.template.guest_id}"

 scsi_type = "${data.vsphere_virtual_machine.template.scsi_type}"

 network_interface {

 network_id = "${data.vsphere_network.network.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 disk {

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 57

 label = "disk0"

 size = "${data.vsphere_virtual_machine.template.disks.0.size}"

 }

 clone {

 template_uuid = "${data.vsphere_virtual_machine.template.id}"

 }

}

Finally, we can summarize the flow that we have previously described as:

1. We will use Vagrant to create the VM template on vSphere.

2. We will use Terraform to automate the deployment of VMs based on templates created in the

previous step.

To complete the environment setup, we will use Rancher [15] to automate the Kubernetes cluster creation

in addition to the previous flow, as shown in the picture below.

Figure 7 - Automated K8S cluster creation with Rancher

As described in section 2.1, several pilots will be working on a NOVA data center. To ensure the best isolation,

each pilot will have its own Kubernetes cluster where each use case will run on a different Kubernetes

namespace.

To simplify and optimize the Kubernetes clusters management, the Rancher tools will be used. Rancher is an

open-source framework that enables multiple cluster management and provisioning. It supports several

Kubernetes distributions both on-premise (RKE, K3S, standard Kubernetes) and as a service (EKS, AKS, and

GKE). The Rancher framework acts as a traversal management layer covering the five K8S clusters (related to

the five INFINITECH pilots hosted in NOVA) and gives administrators the ability to modify all clusters, and to

add/remove nodes, controlling access and adding new clusters if needed. The administrator will be able to

replicate clusters with the eventual necessary modifications, to obtain all the pilot clusters while reducing

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 57

the setup time. Configuration management will be feasible since a cluster definition can be created via web

application and configuration file, possibly versioned.

Between all Rancher Kubernetes supported flavors, the better choice for its completeness of support is RKE

(Rancher Kubernetes Engine), which is a CNCF (Cloud Native Computing Foundation) [16] certified

Kubernetes distribution that leverages Docker container features and SSH to install Kubernetes nodes and

which is fully integrated in Rancher. The previous picture shows that all pilot clusters will be RKE K8S managed

by a Rancher service, which will also be running on an RKE cluster itself.

Figure 8 below, shows the new layout of Sandboxes in a shared Testbed.

Figure 8 - Layout of Sandboxes in NOVA Testbed

2.3.1 Rancher installation

Rancher can be installed on a single node Kubernetes cluster or on a multiple node cluster to obtain higher

availability. Since the configuration and the management tasks of all the clusters are demanded to Rancher

and its API server, it should not be prone to the weakness of a single point of failure, therefore it has to be

deployed appropriately.

For this reason, Rancher can be also installed in HA3, if a Kubernetes dedicated cluster has more than two

etcd nodes and more than one control-plane node. To obtain better performance and more security, we will

dedicate an RKE Kubernetes cluster with the following requisites:

3 https://rancher.com/docs/rancher/v2.x/en/overview/architecture-recommendations/

https://rancher.com/docs/rancher/v2.x/en/overview/architecture-recommendations/

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 57

• Number of nodes: 3

• Node roles: etcd, control-plane, api and worker each

• Each node hardware requisite4 5:

o OS: Ubuntu 16.04, 18.04, 20.04, for our installation will be 18.04

o HW: 2vcpu and 8GB Ram

Rancher implements Role-Based Access Control (RBAC) and supports OpenLDAP [17], so Rancher and cluster

users will be managed centrally by BP OpenLDAP.

2.3.2 Cluster Operations

All NOVA clusters will be GKE-based and managed via Rancher, as this enables centralized provisioning and

access control.

The picture below shows how a user can manage Rancher deployments of different downstream clusters: it

is possible to manage an RKE provisioned cluster (it is the first choice for on-premise clusters in Rancher) or

to manage an AWS provisioned cluster (one of the supported hosted services). The picture also shows that

Rancher enables users to manage each cluster with kubectl in the same way as on a vanilla K8S but connecting

to the Rancher Authentication Proxy. However, if correctly configured, RKE clusters can be accessed also

directly via the master node. Rancher Authentication Proxy integrated with open LDAP simplifies user

management, concentrating all users’ operations on one instance.

Figure 9 - Rancher operation6

4 https://rancher.com/docs/rancher/v2.x/en/installation/requirements/

5 https://rancher.com/support-maintenance-terms/

6 https://rancher.com/docs/rancher/v2.x/en/overview/architecture/

https://rancher.com/docs/rancher/v2.x/en/installation/requirements/
https://rancher.com/support-maintenance-terms/

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 57

2.3.3 Cluster Configuration

All clusters will be as much as possible adherent to a BP cluster configuration: there will be one namespace

for use cases, so multiple namespaces per cluster will be present.

In order to manage public IP, we would like to use MetalLB [18] which will be deployed on Rancher. Its

configuration will be defined accordingly with the NOVA lab owner.

To implement the network policies to isolate each namespace from each other, and eventually also to

manage the connection between different PODs within the same namespace (i.e., to guarantee the security

requirements), we will implement the Cilium [2] as CNI (Container Network Interface) as prescribed by

Blueprint.

Cilium will be installed with Helm [19] with some features enabled:

- fully-routable ENI IP address for each pod;

- metrics and Hubble activated: they provide insights into the state of Cilium itself (agent and

operator).

Cilium policy deployment follows:

apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

metadata:

 name: "allow-within-namespace"

specs:

 - endpointSelector:

 matchLabels: {}

 egress:

 - toEndpoints:

 - matchLabels:

 "k8s:io.kubernetes.pod.namespace": devops

 ingress:

 - fromEndpoints:

 - matchLabels:

 "k8s:io.kubernetes.pod.namespace": devops

 - endpointSelector:

 matchLabels: {}

 egress:

 - toEndpoints:

 - matchLabels:

 "k8s:io.kubernetes.pod.namespace": kube-system

 "k8s:k8s-app": kube-dns

 - endpointSelector:

 matchLabels: {}

 egress:

 - toEntities:

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 57

 - host

 - remote-node

 - endpointSelector:

 matchLabels: {}

 ingress:

 - toEntities:

 - host

 - remote-node

 - world

 - endpointSelector:

 matchLabels: {}

 egress:

 - toEndpoints:

 - matchLabels:

 "k8s:io.kubernetes.pod.namespace": ingress-nginx

 ingress:

 - fromEndpoints:

 - matchLabels:

 "k8s:io.kubernetes.pod.namespace": ingress-nginx

Cluster modification will be controlled via configuration management outside Rancher framework, as it is

possible to dedicate a project on INFINITECH GitLab to keep versioning and to deploy new cluster

configurations via Rancher UI.

2.4 Configuration management adaptation

As pointed out in the previous section, to simplify access management to all the services (like Rancher [15]

console), they will be integrated with BP Open-LDAP [17] service, in order to simplify access management

and to control new services, a new ad hoc user group will be created.

One of the key features of BP resides in its Continuous Integration / Continuous Deployment (CI/CD)

infrastructure, which enables all processes from source code control to applications deployment on clusters,

to be deployed automatically. Such infrastructure will be leveraged also for NOVA Lab, enabling BP CI/CD to

deploy on NOVA K8S [1]clusters.

GitLab [20] is already reachable from the Internet, enabling all INFINITECH users to upload their source code

from everywhere. The same applies to Harbor [21], which enables users to upload their cooked images

without forcing the disclosure of source code and with the capabilities to distribute to any cluster connected

to the Internet.

Jenkins [22] has two main tasks: the first one is to automatically build an application image and push the

build results on the Harbor repository; the second one is to deploy applications.

Image push will be possible in BP in two ways:

1) building from source code with a dedicated Jenkins task (pipeline) which will automatically pushes

images on the Harbor repository, in case of open-source projects;

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 57

2) manually loading an image on Harbor, in the case of a project with closed-source software.

The picture below shows a different flow for closed-source projects.

Figure 10 - Different flow for closed-source projects

To deploy images on NOVA clusters, we will explore the possibility to expose the Rancher cluster-

management ports to BP Jenkins services, so that it will be possible to distribute configurations and finalize

application deployments.

Figure 11 - Deployment Interactions

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 57

2.5 Handling hybrid scenarios

One of the biggest challenges of the NOVA testbed establishment is how to deal with hybrid scenarios. Hybrid

scenarios occur whenever there are indelible constraints that prevent a module from being downward-

mapped in a sandbox within the NOVA premise. Nevertheless, an exceptional component can still match an

upward mapping because the function that it fulfills can find a suitable logical placement within the

INFINITECH reference architecture.

There are two categories of constraints that have been identified: one is the intrinsic constraint which is

related to the fact that a certain component is not containerized using a containerization system compliant

with the specific Kubernetes installation in the testbed which, in the specific case is provided by NOVA. The

other category is the extrinsic constraint which refers to all the software (containerized and/or legacy) which

cannot run within the testbed and must be deployed in a dedicated 3rd party execution environment that

often corresponds to the private infrastructure owned by the module’s provider.

Whenever these constraints occur, the software can be wrapped and handled using the Sidecar deployment,

that allows a component to be hosted remotely, regardless of its containerization status (Figure 12).

Figure 12 - Sidecar deployment

The hybrid deployment can be managed thanks to the built-in Kubernetes service discovery mechanisms and

its networking abstraction layer. In particular, the solution involves the creation of a static Kubernetes service

without pod selectors alongside a new Endpoint object that will send the traffic to the target software,

according to the Kubernetes documentation [23].

kind: Service

apiVersion: v1

metadata:

 name: my-other-module

 namespace: my-pilot

Spec:

 type: ClusterIP

 ports:

 - port: 8081

 targetPort: 8081

kind: Endpoints

apiVersion: v1

metadata:

 name: my-other-module

 namespace: my-pilot

subsets:

 - addresses:

 - ip: 10.105.25.56

 ports:

 - port: 8081

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 57

In the case that the administrator of the 3rd party execution environment provides a public hostname to get

access to the considered module, the solution is to create a Kubernetes service of type “ExternalName” and

allow the in-cluster sandbox to communicate through it.

In general, static services, endpoints and externalname services can be combined to overcome such kinds of

constraints in an elegant and maintainable manner.

kind: Service

apiVersion: v1

metadata:

 name: my-foreign-module

 namespace: my-pilot

spec:

 type: ExternalName

 externalName: foreign-module.3rdparty.org

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 57

3 Sandboxes for FinTech and InsuranceTech

Innovators

3.1 Mapping approach

The overall mapping approach consists of four subsequent steps (see Figure 13):

1. the first step is the analysis of the technical specification related to each dependency and

subcomponent that the pilots have to use in order to reach their objectives, in other words, how to

get a docker image of the components and/or how to get it out from the legacy software in case the

component has never been containerized before. The docker image has to be configured at deploy

time to be used without any constraint within a Kubernetes pod.

2. The second step, namely “upward mapping” consists in the mapping of all the components used and

produced by the pilots into the INFINITECH reference architecture main categories (please see D2.13

for further details), so that all the artifacts will be categorized and handled within the context of the

INFINITECH project as a whole for an easier fetch in the INFINITECH software catalogue and for an

easier solution addressing the use-case problems. As a quick recap, this logical categorization is

composed of the following groups: data sources, data ingestion, data management, data security

and privacy, blockchain and information sharing, data model and semantics, internet of things,

analytics and machine learning, interfaces.

3. The third step consists in the production of one or more Kubernetes objects. This step strictly

depends on the scope and on the requirements of the modules that have to be mapped. As a rule of

thumb, some factors that may condition the deployment mapping are:

⚫ If two or more components are tightly coupled and match a functionality together, then it’s

better to have them within the same pod.

⚫ If the correct execution of a module strictly depends on the hardware characteristics of a

particular node it should run onto, for example if software requires the computational

capabilities of the graphic card, then the pod has to use the node affinity feature available in

Kubernetes.

⚫ If the module needs storage persistence, and the storage class is not a distributed storage or a

network-reachable storage, then it’s better to use a statefulset or node affinity.

⚫ It’s always better to externalize any configuration property file using environment variables

and/or Kubernetes configmaps in order to avoid any kind of hardcoded tuning of the software.

⚫ If the usage of a module is recurrent among several pilots, the possibility to have it deployed

within a shared namespace in the testbed and linked with an external service has to be

considered.

4. The fourth and final step is the refinement of the testbed template (helm or Kubernetes yaml file)

in order to include the “heavyweight shared frameworks” found within the context of the pilots. A

report related to the outcome of this activity is described in section 3.7. Note that in the TO-BE

strategy and mapping section dedicated to each Pilot in this document, there is a list of all the

Kubernetes API Resources used to map each component in the sandbox and the majority of these

API Resources belong to the default Kubernetes API Group.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 57

Figure 13 - Overall mapping workflow

After several per-pilot iterations of the process described above, in NOVA’s infrastructure (as well as in an

on-premise environment where these guidelines can be applied) a logical isolation through Kubernetes

namespaces will be generated. The kube-system and istio-system namespaces will be in charge of executing

a set of mandatory system components for the correct execution of the Kubernetes stack. Besides these

namespaces, there will be in place a sandbox for each pilot that will be hosted on NOVA’s available nodes as

described in section 2.3. Then, a shared namespace will host all the heavyweight frameworks that work off

the shelf and can be accessed from pilots’ sandboxes, exposed through Kubernetes’ external services, and

deployed if and only if they offer a native isolation mechanism so that the interaction of a sandbox with the

shared frameworks does not affect the interaction of another sandbox with the same framework (Figure 14).

Figure 14 – NOVA shared testbed namespaces

Just as an example, if 3 out of 5 pilots require Hadoop HDFS and Apache Kafka to be in place as framework

dependency of the INFINITECH’s software they develop, it’s reasonable to host them within the heavyweight

shared frameworks’ namespace since they both offer an independent isolation mechanism and both of them

are meant to store and transfer a huge amount of data. This choice allows also freeing-up of a lot of system

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 57

resources as there’s no need to replicate “p times r replicas” where p is the number of pilots requiring the

dependency and r is the number of replicas of the dependency. Digging deeper into the topic of the

downward mapping and therefore, to the Kubernetes object design, here is reported an object example (a

deployment) as a reference that will be used for every pilot involved in this activity.

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: my-infinitech-component

 infinitech.ra: Ingestion (1)

 name: my-infinitech-component

 namespace: pilot-01 (2)

spec:

 replicas: 1

 selector:

 matchLabels:

 app: my-infinitech-component

 strategy:

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 type: RollingUpdate

 template:

 metadata:

 labels:

 app: app: my-infinitech-component

 spec:

 containers:(3)

 - image: infinitech-registry/my-infinitech-component:<sha-commit>

 imagePullPolicy: IfNotPresent

 name: my-infinitech-component

 ports: (4)

 - containerPort: 8080

 name: web

 protocol: TCP

 resources: {} (5)

 volumeMounts: (6a)

 - mountPath: /app/my-infinitech-component.properties

 name: configuration

 subPath: my-infinitech-component.properties

 name: my-infinitech-cm

 env: (7)

 - name: MY_ENV_VARIABLE

 value: "Hello variable"

 volumes: (6b)

 - configMap:

 name: configuration

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 57

As a good practice, a (1) “infinitech.ra” label will be added in order to keep a link to the INFINITECH Reference

Architecture, this approach would be useful to perform filtering queries using the Kubernetes API as the

testbed grows during its lifespan. If the app object contains several modules that belong to different

INFINITECH RA groups, i.e. a deployment that has a pod specification with two or more containers, as many

“infinitech.ra” labels can be appended in the label section of the object. In this way, the administrators have

the possibility to perform informative queries for maintenance such as:

$ kubectl get all --all-namespaces --selector=infinitech.ra=ingestion

This command returns a list of all the Kubernetes objects in the testbed that are related to the ingestion

INFINITECH reference architecture group. The sandbox isolation (2) is performed using separated

namespaces in the Kubernetes NOVA cluster. The namespace has to be created before using it, issuing the

following command from a client attached to one of the control plane master nodes:

$ kubectl create namespace <namespace name>

A list of containers is defined in section (3); the inputs asked in the pilots in the related table of the dedicated

paragraphs, contribute to building up the information related to the port used (4), the environment variables

(7), and the resource consumption/request to the Kubernetes cluster (5). Last but not least, any application-

related configuration file can be handled by defining a ConfigMap Kubernetes object (6b) and consuming it

as a volume within the filesystem context of the container (6a).

3.2 Pilot#2 - Real-time risk assessment in Investment Banking

3.2.1 Objectives, sandbox and technologies overview

As reported in the deliverable D2.13, the pilot will build a real-time risk assessment and monitoring pipeline

for VaR (Value-at-Risk) and ES (Expected Shortfall) risk metrics. The components that will be used are

described in the following table.

© INFINITECH Consortium

Table 1 – Pilot #2 technologies overview

Component

name

Type (DEP/INF)

(please indicate if the

component is a (third-

party or proprietary)

dependency) or an

infinitech component

to be developed

Resources: CPU,

memory, storage to

deploy the component

Exposed port (if

applicable)

Environment variables Deployment mode (legacy/container/

Kubernetes)

BigData

Management

Layer

INF

(under the proprietary

rights of LXS)

Minimum: 4G RAM/

2VCores

1529, 2181, 9876, 14400,

9992

Under development at the current

phase

container

Custom

Injection

Simulator

INNOV (demo) container

Kafka DEP ENV

KAFKA_VERSION=$kafka_version \

SCALA_VERSION=$scala_version \

KAFKA_HOME=/opt/kafka \

GLIBC_VERSION=$glibc_version

PATH=${PATH}:${KAFKA_HOME}/bin

container

Zookeeper DEP 2181 container

PredictVaR INNOV - container

VisualizeVaR INNOV 8050 container

© INFINITECH Consortium

3.2.2 First stage components deployment and Local testbed system

description

The pilot workflow can be analysed starting from the datasets that will be utilized. The proposed datasets

consist of: i) historical market prices, ii) real time market prices iii) trading positions iv) text data (sentiment

analysis). Both static data injection and dynamic data injection will be used in the frame of this pilot.

The pilot’s architecture status is currently at version 0.2 (pilot2_v0.2), as described in D.7.1 and presented

during the internal General Assembly meeting. In the next couple of months version 0.3 will be released. So,

in the current deliverable both versions 0.1 and 0.2 will be described, furthermore future upgrades (v0.3) will

be discussed as well, in order to present the roadmap and the challenges which arise in each step to

accomplish the pilot’s objectives, as per the following paragraphs. Finally, a table with the required libraries

and frameworks is included.

pilot2_v0.1:

This implementation consists of the following four building blocks (containers):

1. Database (LXS): This container is responsible for the required data storage. The historical data is

downloaded and imported directly from the project repository (Gitlab) to the DB, while the “real

time” data is injected to the DB via JDBC connection. It should be mentioned that SSH connection to

the project repository is needed (historical data injection).

2. Custom injection Simulator: Due to the fact that an API to access real time data is not currently

available, for the purpose of PoC, the given market data is split into two parts, the first of which

serves as the historical market prices dataset while the other serves as the real time market prices

dataset. Both the historical and real time data are stored in the DB via JDBC connection.

3. VaR Prediction: This container is responsible for the main tasks of this pilot:

a. Reads both the historical and new data available from the DB

b. Preprocesses the input data and writes the clean ones to the DB

c. Performs VaR calculation and writes the results to the DB

4. Visualization: This container serves as the pilot’s graphical user interface. It is a web application

currently using Python Flask framework.

pilot2_v0.2:

This implementation consists of the following six building blocks (containers):

1. Database (LXS): same as v0.1.

2. Custom Injection Simulator: The main difference between v0.1 and v0.2 is that the preprocessed

“real time” data is published in the kafka pub/sub. The historical prices are injected once in the LXS

DB as in v0.1. The main scope for this change is to demonstrate the capability of incorporating kafka

pub/sub service which will be used in the final version of the pilot.

3. Kafka/Zookeeper: These containers provide the link between the “Custom Injection Simulator” and

the “VaR Prediction”.

4. VaR Prediction: This container is responsible for the main task of this pilot, performing the following:

i. Reads the historical data from the DB

ii. Preprocesses the input data and writes the clean data to the DB

iii. Reads “real time” data published from the “Custom Injection Simulator” to the kafka

queue

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 57

iv. Performs VaR calculation and writes the results to the DB

5. Visualization: same as v0.1.

pilot2_v0.3 (future work):

1. Database (LXS): The difference between earlier versions and this one will be that real time data will

be injected as a stream, possibly utilizing Apache kafka streaming platform.

2. Custom Injection Simulator: Given that real time data will be provided by the JRC and LXS kafka

interface for storing real time tick data, the simulator will not be needed.

3. VaR Prediction: Will retrieve incrementally data from LXS DB (either kafka or JDBC connection).

Moreover, Spark may also be utilised in order to parallelize calculations.

4. Visualization: Flask will be used in conjunction with an application server and load balancer instead

of using Flask’s built-in web server.

Next versions:

Market Sentiment components will be included. The main task of this container will be to retrieve alternative

data (e.g., data from news) that will be used for market sentiment analysis based on NLP (Natural Language

Processing Techniques).

Provides an interface for accessing to FIBO data, while supporting their parsing. The semantic annotation and

the structuring of the data according to FIBO is performed in WP4 and hence the relevant description is

beyond the scope of this deliverable.

3.2.3 TO-BE strategy and mapping according the INFINITECH way

The upward mapping, according to the information provided by Pilot #2 and to the INFINITECH Reference

Architecture, gives results as follows:

Table 2 - Pilot #2 mapping with INFINITECH Reference Architecture Group

INFINITECH Reference Architecture Group Component

Data Source

Data Ingestion Custom Injection Simulator

Data Management Big Data Management Layer

Data Security and Privacy

Blockchain and Information Sharing

Data Model and Semantics

Internet of Things

Analytics and Machine Learning PredictVaR

Interface VisualizeVaR

Cross Cutting Zookeeper

namespace Kafka

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 57

At the first instance, the downward mapping can be summarized using the following table, in which the

Kubernetes API resources used in the sandbox are specified per component. The content of the list may vary

during the development of the activities performed within task T6.5, according to the evolution of the

development of the involved INFINITECH components. A sprint can easily re-shape some of the objects listed

below at any time.

Table 3 - Pilot #2 mapping with Kubernetes objects

Componen

t

C
o

m
p

o
n

e
n

ts
ta

tu
s

C
o

n
fi

gm
ap

En
d

p
o

in
t

P
e

rs
is

te
n

tV
o

lu
m

e
C

la
i

m

P
e

rs
is

te
n

tV
o

lu
m

e

P
o

d
Te

m
p

la
te

Se
cr

e
t

Se
rv

ic
e

A
cc

o
u

n
t

Se
rv

ic
e

D
ae

m
o

n
se

t

D
e

p
lo

ym
e

n
t

St
at

e
fu

ls
e

t

H
o

ri
zo

n
ta

lP
o

d
A

u
to

sc

al
e

r

C
ro

n
Jo

b

Jo
b

In
gr

e
ss

Custom

Injection

Simulator

 X X

Big Data

Manageme

nt Layer

 X X X X X

PredictVaR X X

VisualizeVa

R
 X X X

Zookeeper X X X X

Kafka X X X

© INFINITECH Consortium

3.3 Pilot#11 - Personalized insurance products based on IoT

connected vehicles

3.3.1 Objectives, sandbox and technologies overview

Pilot#11 is framed within Cluster #4 that relies on AI technologies and models to exploit wide IoT datasets

from end users and related context. The objective of the cluster is to update and enhance the common

methodologies the insurance companies use to analyze the different risks tied to the offered products whilst

allowing them to tailor the offered services according to the insured client’s behaviour. This way (please see

D7.1 for further details), the pilot focuses on its car insurance environment to develop two AI powered

services: Pay as you Drive, that allows the insurance company to adapt prices by classifying the driver

according to the way he/she drives; and Fraud Detection which helps to identify the actual driver of a vehicle

involved in an accident. These two services rely on a driving profiling tool that requires datasets from

connected vehicles to define, identify and train the different profiles as ML models. Other external data

sources, such as traffic accidents or weather, will be used to classify the driver, contextualizing its assigned

driving profile.

The following table shows a detailed list of the components, their roles within the architecture and some

deployment detail that will be subject to some slight changes in the near future.

© INFINITECH Consortium

Table 4 - Pilot #11 technologies overview

Component

name

Type (DEP/INF)

(please indicate if the

component is a (third-

party or proprietary)

dependency) or an

infinitech component

to be developed

Resources: CPU,

memory, storage to

deploy the component

Exposed port (if

applicable)

Environment variables Deployment mode (legacy/container/

Kubernetes)

Connected Car

Framework

(Context

Broker)

DEP

CPU: 1 Small + 2 Medium

Nodes (9 Cores total)

20 GB RAM

1 TB Storage

n/a Kubernetes

Connected Car

Framework

(PeP Proxy)

DEP 1 port to be provided in

deployment phase

 Kubernetes

Connected Car

Framework

(Historical DB:

CrateDB)

DEP (if required) 1 port to be

provided in deployment

phase

 Kubernetes

Connected Car

Framework

(Context DB:

Mongo)

DEP 1 port to be provided in

deployment phase

(27017)

 Kubernetes

Connected Car

Framework

(QuantumLeap)

DEP 1 port to be provided in

deployment phase

 Kubernetes

Connected Car

Framework

(Weather

Injector)

INF n/a AEMET API Key; List of Weather

Staions' Ids to monitor

Kubernetes

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 57

Connected Car

Framework (IoT

Agent)

INF/DEP n ports required for n

sources injecting (1 port

required for this

deployment)

 Kubernetes

Connected Car

Framework

(Grafana)

DEP 1 port to be provided in

deployment phase

 Kubernetes

Security

Framework

(IDM)

DEP

1 port to be provided in

deployment phase

 Kubernetes

Anonymiser

(GRAD

Anonymiser)

INF/DEP 1 Node (4 Cores)

16 GB RAM

1 TB Storage

TBD TBD

EASIER.AI

(Elasticsearch)

DEP CPU: 1 Small + 2 Medium

+ 1 Large + 1 XXL Nodes

(21 Cores total)

68 GB RAM

4 TB Storage

GPU, FPGA, TPU, or other

special AI hardware.

AVX2 Instructions set

support

n/a Kubernetes

EASIER.AI

(kibana)

DEP 1 port to be provided in

deployment phase

 Kubernetes

EASIER.AI

(logstash)

DEP n/a Kubernetes

Pay as You

Drive Service

INF As a first approach,

EASIER infrastructure will

be used

TBD Kubernetes

Fraud

Detection

Service

INF As a first approach,

EASIER infrastructure will

be used

TBD Kubernetes

© INFINITECH Consortium

3.3.2 First stage components deployment

The final implementation of Pilot#11 requires data from the components set shown in Figure 15, extracted

from D7.1 and D6.1. These will be deployed within the NOVA infrastructure, using the INFINITECH CI/CD

methodology (based on docker and Kubernetes technologies). In this sense:

• IoT infrastructures and Data Normalization (from D7.1) components include a set of Data Injectors,

based on NGSI-LD and FIWARE data models, developed in Python and Node and distributed as docker

images.

• Data Collection & Aggregation and Data Processing components constitute the Connected Car

framework. This is composed of the FIWARE Orion Context Broker, that supports all context

management functionalities (context information broker), and an instance of the FIWARE

QuantumLeap General Enabler (context information persistence) that supports historical

information management. A first instance, covering these two components, has been implemented

and deployed in Atos’ infrastructure. The full composition of this building block will be provided as

docker images and Kubernetes yaml files.

• Gradiant’s Anonymizer tool implementation will be also provided according to CI/CD guidelines.

• EASIER-AI is the AI Hybrid (Cloud/Edge) framework that helps to develop, measure, monitor and

deploy customised AI models. It is built on top of the Elastic Search, Kibana and TensorFlow slate of

three and enables different ML/DL technologies deployment.

• The access to these frameworks (Connected Car and EASIER-AI) is protected by an OAuth

identification and authentication component that relies on the FIWARE KeyRock IdM. SSL/TLS is

used to protect communications. This is deployed and integrated with the Connected Car framework,

and as all components of the P#11 framework, will be uploaded and distributed according to

INFINITECH CI/CD templates.

Figure 15 - Pilot #11 High Level Architecture

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 57

3.3.3 TO-BE strategy and mapping according to the INFINITECH way

As described by the Pilot, there are several components to be classified and mapped to the INFINITECH

Reference Architecture and to the sandbox. A first logical architecture is described, as usual, in document

D2.13 and, in the following table, there is the classification of each module and the label that refers to the

macro-component using the glossary adopted by the pilot:

Table 5 - Pilot #11 mapping with INFINITECH Reference Architecture Group

INFINITECH Reference Architecture Group Component

Data Source (Connected Car Framework) CrateDB

(Connected Car Framework) MongoDB

(Connected Car Framework) QuantumLeap

Data Ingestion (Connected Car Framework) WeatherInjector

(EASIER.AI) Logstash

Data Management (Connected Car Framework) Context Broker

(EASIER.AI) Elasticsearch

Data Security and Privacy (Connected Car Framework) PeP Proxy

(Security Framework) IDM

(Security Framework) Anonymizer

Blockchain and Information Sharing

Data Model and Semantics

Internet of Things (Connected Car Framework) IoT Agent

Analytics and Machine Learning (EASIER.AI) Kibana

Interface (Connected Car Framework) Grafana

Pay as You Drive Service

Fraud Detection Service

Cross Cutting

With regards to the downward mapping, it is worth specifying that not every component corresponds 1:1 to

a Kubernetes object file. One or more components as a container may be declared in the same Kubernetes

application object.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 57

Table 6 – Pilot #11 mapping with Kubernetes objects

Component

C
o

m
p

o
n

en
ts

ta
tu

s

C
o

n
fi

gm
ap

En
d

p
o

in
t

P
er

si
st

en
tV

o
lu

m
eC

l

ai
m

P

er
si

st
en

tV
o

lu
m

e

P
o

d
Te

m
p

la
te

Se
cr

et

Se
rv

ic
e

A
cc

o
u

n
t

Se
rv

ic
e

D
ae

m
o

n
se

t

D
ep

lo
ym

en
t

St
at

ef
u

ls
e

t

H
o

ri
zo

n
ta

lP
o

d
A

u
to

sc
a

le
r

C
ro

n
Jo

b

Jo
b

In
gr

es
s

CrateDB X X X X X X

MongoDB X X X X X

QuantumLe

ap
 X X X X

WeatherInje

ctor
 X

Logstash X X X X X X X X

Context

Broker
 X

Elasticsearc

h
 X X X X X X X

PeP Proxy X X X

IDM X X X X X X

Anonymizer X X X X

IoT Agent X X

Grafana X X X X X X X X X

Kibana X X X X

Pay As You

Drive

Service

 X X X X

Fraud

Detection

Service

 X X X X

3.4 Pilot#12 - Real World Data for Novel Health-Insurance products

3.4.1 Objectives, sandbox and technologies overview

Pilot#12 focuses on health insurance and risk analysis by developing two AI-powered services: Risk

assessment, that allows the insurance company to adapt prices by classifying the client according to their

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 57

lifestyle; and the Fraud Detection which helps to identify fraudulent behaviour of the clients by using the

activity trackers and answering health questionnaires. These two services rely on people modelling that

requires actual data and simulated persons to train. An overview of Pilot #12 is given in Figure 16.

Figure 16 - Pilot #12 Real world data for novel health insurance products overview

Infinitech data collection

Healthentia

platform

AI platform

Lifestyle

profiles
Lifestyle

classifiers

Risk

assessment
Fraud

detection Health insurance company

Clie

nts

Us

ers

Measurement

s

Report

s Data collection

Data simulation

Retrieval Cleaner

Reg. tools (DPO +

Anonymization)

© INFINITECH Consortium

Table 7 - Pilot #12 technologies overview

Component

name

Type (DEP/INF)

(please indicate if the

component is a (third-

party or proprietary)

dependency) or an

infinitech component

to be developed

Resources: CPU,

memory, storage to

deploy the component

Exposed port (if

applicable)

Environment variables Deployment mode (legacy/container/

Kubernetes)

UBITECH Data

Capturing Tool

INF

4 processors / 18 cores,

64 GB memory, 1TB

storage

 Container

LeanXcale

Database

DEP Port 1529 is exposed from

the LeanXcale docker

container to the VM itself

and also by the VM to the

internet

None Container

Innovation

Sprint’s ML

services (risk

assessment

and fraud

detection)

INF (this is a Python

app with

dependencies on 3rd

party libraries. The

dependencies are

listed in

requirements.txt and

are installed via pip)

None Configuration variables in a .env

file: HEALTHENTIA_API_KEY &

HEALTHENTIA_PORTAL_URI

(communicate with Healthentia

API), SECRET_KEY

(authentication)

Container

ATOS

Regulatory tool

through Data

protection

Orchestrator

(DPO)

DEP 1 port to be provided in

deployment phase

None Container

GRAD

Regulatory tool

through

Anonymization

Component

INF At least 1 port to be

provided in deployment

phase

TBD Container

© INFINITECH Consortium

3.4.2 First stage components deployment

Since the final pilot #12 testbed to be hosted by NOVA is not yet available, a temporary testbed is setup by

Innovation Sprint. It comprises a VM with 2 vCPUs, 8 GB RAM, 80 GB storage hosted on Hetzner.com (CX31

instance).

The software is setup on Linux 2020LTS, currently including:

● Ubitech’s Data Capturing Tool (configured to capture data from Healthentia API, https://saas-

api.healthentia.com/swagger/index.html),

● LeanXcale database, and

● Innovation Sprint’s ML services (risk assessment and fraud detection).

Installation and usage of LeanXcale is done as follows:

● git clone https://gitlab.infinitech-h2020.eu/pkranas/lxs-store/

● docker build -t lx-store.

● docker run -d --name datastore -p 1529:1529 {image_id}

The latter will start a container in the background, which will install and start LXS, and will expose the 1529

port to the host machine. 1529 is the port that the query engine is listening to and at which the connection

is established. The included SQL client called lxClient resides inside the lxs container.

The main DB connection string is: jdbc:leanxcale://135.181.144.50:1529/INFINITECH;user=pilot12

• Regulatory tools through DPO implementation and anonymization components will be provided

according to CI/CD guidelines.

3.4.3 TO-BE strategy and mapping according the INFINITECH way

The pilot adopts five key modules: two of them are marked as a dependency and three of them are

INFINITECH-related artifacts. They can be regrouped as follows:

Table 8 - Pilot #12 mapping with INFINITECH Reference Architecture Group

INFINITECH Reference Architecture Group Component

Data Source

Data Ingestion UBITECH Data Capturing Tool

Data Management LeanXcale Database

Data Security and Privacy ATOS Regulatory tool through Data protection

Orchestrator (DPO)

GRAD Regulatory tool through Anonymization

Component

Blockchain and Information Sharing

Data Model and Semantics

http://hetzner.com/
https://saas-api.healthentia.com/swagger/index.html
https://saas-api.healthentia.com/swagger/index.html

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 57

Internet of Things

Analytics and Machine Learning Innovation Sprint’s ML services

Interface

Cross Cutting

Each component is arranged in the Pilot 12 sandbox according to the scheme depicted in the table below.

No hybrid environment exceptions are detected for this pilot.

Table 9 – Pilot #12 mapping with Kubernetes objects

Component

C
o

m
p

o
n

en
ts

ta
tu

s

C
o

n
fi

gm
ap

En
d

p
o

in
t

P
er

si
st

en
tV

o
lu

m
eC

l

ai
m

P
er

si
st

en
tV

o
lu

m
e

P
o

d
Te

m
p

la
te

Se
cr

et

Se
rv

ic
e

A
cc

o
u

n
t

Se
rv

ic
e

D
ae

m
o

n
se

t

D
ep

lo
ym

en
t

St
at

ef
u

ls
e

t

H
o

ri
zo

n
ta

lP
o

d
A

u
to

sc
a

le
r

C
ro

n
Jo

b

Jo
b

In
gr

es
s

UBITECH

Data

Capturing

Tool

 X X X X X

LeanXcale

Database
 X X X X X X X

ATOS

Regulatory

tool

through

Data

protection

Orchestrat

or (DPO)

 X X X X X

GRAD

Regulatory

tool

through

Anonymiza

tion

Component

 X X X X

Innovation

Sprint’s ML

services

 X

© INFINITECH Consortium

3.5 Pilot#13 - Alternative/automated insurance risk selection -

product recommendation for SME

3.5.1 Objectives, sandbox and technologies overview

Pilot #13 will monitor a risk’s changes, so it will be able to radically improve the risk management that small

and medium enterprises face in the development of their daily activity. The indicators will be based on

information from each of the companies coming from online sources, providing information about the digital

presence and activity of those companies like activity, business volume, participation in social networks,

number of employees, use of ecommerce, payment platform, etc, etc. The company to be analysed does not

need to provide much information, developed tools are in charge of searching and gathering information

related to that company from many sources. In this way, risk profiles of each of the companies analysed will

be generated, allowing customization of the product offering and the addition of permanent automated risk

management. But this is not the only usage of data, insurance companies will use wider information,

resulting in better customized products.

An overview of Pilot #13 is provided in Figure 17.

Figure 17 - Pilot #13 overall architecture

In the overall architecture, there can be identified three layers of building blocks of the overall solution:

⚫ Data Acquisition Layer. This layer is used to obtain data from the information sources which are related

to the digital presence and activities of the consumers, using automations developed by WEA. It is

considered external to the INFINITECH sandbox and will feed the latter with the aggregated information

after the initial pre-processing and preparation of the data.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 57

⚫ Data Management Layer. This layer is used to store the data coming from the previous layer and allow

for their efficient processing. It will make use of INFINITECH components developed in the project, and

more precisely the infinistore which includes the HTAP Data store along with its extensions with the

polyglot engine.

⚫ Analytics Layer. This layer contains the AI algorithms and analytics that make use of the data available

by the data management layer. These AI analytics will be developed by WEA and will be pilot-specific,

solving the needs of the pilot by exploiting the technologies provided by INFINITECH for efficient data

processing of data coming from a variety of heterogeneous resources. They will be hosted inside the

WeAnalyze platform external to the deployed sandbox.

⚫ Visualization Layer. This layer contains the REST endpoints and visualization components that enable the

end-users to see the results of the analysis via a User Interface, by importing them to their own

applications via the use of the REST APIs. It will consume the results of the analytics layer which will be

deployed in the premises of WEA, and therefore, there is no need for the components of this layer to be

hosted inside the sandbox deployed in the NOVA infrastructure.

As we can see, the Data Management Layer of the overall solution consists of the infinistore component,

which encloses both the HTAP data store and the polyglot engine. The following table contains the relevant

information for this component.

© INFINITECH Consortium

Table 10 - Pilot #13 technologies overview

Component

name

Type (DEP/INF)

(please indicate if the

component is a (third-

party or proprietary)

dependency) or an

infinitech component

to be developed

Resources: CPU,

memory, storage to

deploy the component

Exposed port (if

applicable)

Environment variables Deployment mode (legacy/container/

Kubernetes)

INFINISTORE INF 1st phase:

CPUS: 2 cores

Memory: 8GB

Storage: 100GB

However these

requirements will be

further refined in the 2nd

phase of

implementation, when

this component needs to

serve additional volume

of data

1529, 2181, 9876, 14400,

9992

 Kubernetes

Data

Acquisition

Layer

DEP 3rd party (sidecar deployment)

Analytics Layer DEP 3rd party (sidecar deployment)

Visualization

Layer

DEP 3rd party (sidecar deployment)

© INFINITECH Consortium

3.5.2 First stage components deployment

At the time that this document is being written, the NOVA infrastructure was not yet available to the

consortium. In order to accelerate the development process for the first phase of this pilot, we made use of

AWS resources to deploy the components that are part of the INFINITECH platform and should be deployed

inside the sandbox. Regarding the data collection and preparation, this has been done offline and a dataset

was created to be migrated to the infinistore. This process was made manually using the tools provided by

the infinistore. The ML algorithms were kept in premise of WEA and developers were given access to the

AWS machines where the data management layer had been deployed, allowing the connection to a specific

port. As these algorithms will be hosted inside the platform of WEA, this will remain the same after the

deployment of the sandbox in the NOVA infrastructure.

The migration and the deployment into the NOVA infrastructure will be facilitated using Kubernetes

deployment orchestration. For the first stage components deployment, the same resources will be needed,

as in AWS, as at this phase, the pilot is targeting a small part of data. Once the infinistore component is

deployed, then the ML tools developed by WEA for the needs of the pilot will need to connect to a specific

port that needs to be exposed by the sandbox. Moreover, the integration with the Data Acquisition layer

needs to take place, in order to automate the process of obtaining data from the information sources and

storing them into the Data Management layer, following all steps of data preparation and integration. The

data acquisition layer well be hosted outside of the sandbox and it will be required to access the data

management layer to additional ports. For this data connectivity, client/connectors developed in the scope

of INFINITECH will be used to allow this connectivity, however, as they are client libraries, they will be

included in the Data Acquisition layer and therefore, they will be outside of the testbed.

3.5.3 TO-BE strategy and mapping according to the INFINITECH way

The upward mapping is straightforward having one component under development in the Data Management

group. The other component are external and match the sidecar scenario described in section 2.5.

Table 11 - Pilot #13 mapping with INFINITECH Reference Architecture Group

INFINITECH Reference Architecture Group Component

Data Source

Data Ingestion Data Acquisition Layer

Data Management INFINISTORE

Data Security and Privacy

Blockchain and Information Sharing

Data Model and Semantics

Internet of Things

Analytics and Machine Learning Analytics Layer

Interface Visualization Layer

Cross Cutting

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 57

The downward mapping results as per the table:

Table 12 – Pilot #13 mapping with Kubernetes objects

Compon

ent

C
o

m
p

o
n

en
ts

ta
tu

s

C
o

n
fi

gm
ap

En
d

p
o

in
t

P
er

si
st

en
tV

o
lu

m
eC

l

ai
m

P
er

si
st

en
tV

o
lu

m
e

P
o

d
Te

m
p

la
te

Se
cr

et

Se
rv

ic
e

A
cc

o
u

n
t

Se
rv

ic
e

D
ae

m
o

n
se

t

D
ep

lo
ym

en
t

St
at

ef
u

ls
e

t

H
o

ri
zo

n
ta

lP
o

d
A

u
to

s

ca
le

r

C
ro

n
Jo

b

Jo
b

In
gr

es
s

Data

Acquisitio

n Layer
 X

INFINISTO

RE
 X X X X X X X

Analytics

Layer
 X

Visualizati

on Layer
 X

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 50 of 57

3.6 Pilot#14 - Big Data and IoT for the Agricultural Insurance

Industry

3.6.1 Objectives, sandbox and technologies overview

The objective of Pilot #14 “Big Data and IoT for the Agricultural Insurance Industry” is to deliver a commercial

service module that will enable insurance companies to exploit the untapped market potential of Agricultural

Insurance (AgI), taking advantage of innovations in Earth Observation (EO), weather intelligence & ICT

technology. EO will be used to develop the data products that will act as a complementary source to the

information used by insurance companies to design their products and assess the risk of natural disasters.

Weather intelligence based on data assimilation, numerical weather prediction and ensemble seasonal

forecasting will be used to verify the occurrence of catastrophic weather events and to predict future perils

that could threaten the portfolio of an agricultural insurance company. The INFINITECH AgI-module derived

indices will allow and enable the agricultural insurance industry to enlarge its market, while delivering a larger

portfolio of products at lower costs and serve areas where classical insurance products could not be

delivered.

AgroApps is developing the entire infrastructure for the pilot #14 data products, based on the reference

architecture starting from data collection from different sources, over processing and analytics, to user

interface & data visualization. The ongoing development of the service module is based on scientific research

in the field of agricultural insurance, climate & weather risk modelling and the most recent evolutions in the

area of remote sensing technologies. The reason for this is that these three areas will play a crucial role for

the future of agricultural insurance providers in order to tap new markets, provide better risk-transfer

solutions and make insight-based strategic decisions. To meet the demands of this rapidly evolving field, it is

necessary to follow these current developments.

As described in the User Stories (please see D.2.1 for further details), the service module is mainly designed

for staff of the underwriting and sales department of agricultural insurance companies (the majority of User

stories serves this group of end-users). However, within those departments, there are several roles that can

benefit from the services provided by Pilot #14. First of all, Actuaries (business professionals /mathematicians

who analyze the financial consequences of risk by using statistics) are able to improve their data set for risk

pricing and product development based on the data retrieved from the service module. Based on this

information, Underwriters can better evaluate the risk and exposure of potential clients (crop monitoring)

and hence make the overall insurance portfolio more resilient by at the same time increasing the outreach

to clients (farmers). Additionally, Sales Agents can identify areas where they can prioritize sales activities

without increasing the cumulative risk since they are aware of key factors, e.g. regional risk profiles.

Lastly, with the support of data derived from the Octopush EO (damage assessment services), loss adjusters

have additional information to make the on-farm process of loss adjusting more efficient and for certain

perils they conduct this process remotely via the service module (without visiting the farm/respective field).

In addition to the implementation within insurance companies, at a later stage of the project other users in

the insurance value chain can also be considered as end users (see D.2.1.).

A first contact inside an insurance company in the Area of Interest (Serbia) has been made and immediately

generated interest because of the benefits the Pilot #14 service module has to offer. The feedback on the

presented services was very positive, just a final decision by the management is outstanding.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 51 of 57

As in this very first stage of the preparation of the pilot site the receiving of an appropriate and high-quality

dataset from the pilot insurance company and the application of the services described in Pilot #14 have

highest priority, there are no training plans developed for deployment to the final user yet. However, for the

internal deployment at the final pilot site, Pilot #14 can provide an independent web-based user interface

for the end users to access the service module via their browser.

Based on the reference architecture (please see D2.13, Figure 43) as well as the Report on Pilot Sites

Preparation (please see D7.1), the following components and services will be deployed and used as part of

the pilot:

© INFINITECH Consortium

Table 13 - Pilot #14 technologies overview

Component

name

Type (DEP/INF)

(please indicate if the

component is a (third-

party or proprietary)

dependency) or an

infinitech component

to be developed

Resources: CPU,

memory, storage to

deploy the component

Exposed port (if

applicable)

Environment variables Deployment mode (legacy/container/

Kubernetes)

Octopush

Service

DEP vCPU8, 64GB RAM, 10TB

Storage

 Docker Container (sidecar deployment)

AgroApps

Weather

Engine

(AgroApps WIE)

DEP vCPU240,

512GB RAM,

10TB Storage

 Singularity Container

Data Integrator DEP Docker Container (sidecar deployment)

Business and

Geospatial DB

DEP 375GB Docker Container (sidecar deployment)

Web Map

Server (WMS

Server)

DEP vCPU2, 64GB RAM, 1TB

Storage

 Docker Container (sidecar deployment)

RESTful API DEP Docker Container (sidecar deployment)

User Interface INF Docker Container (sidecar deployment)

© INFINITECH Consortium

3.6.2 First stage components deployment

To ease the development and the deployment of the INFINITECH pilot 14 platform in new computers and

systems, the platform uses a virtualization ecosystem based on Docker containers. Currently the INFINITECH

pilot 14 stack consists of the following containers:

• PHP 7 with Apache HTTP Server and Python 3 – For the Lumen application and the EO data retrieval

tool

• PostgreSQL 10 with PostGIS 2.5 – For the relational storage needs of the platform

• Apache Tomcat 8 with GeoServer 2.13 – For rendering and serving the satellite index data

• Nginx 1.14 – For serving the web application (front-end)

• WRFv4.2 – For the numerical weather prediction system (Weather Intelligence Engine)

• WRFDA – For the atmospheric data assimilation system (Weather Intelligence Engine)

• UPPv4.1 – For the post-processing of the atmospheric fields

• METv9.1- For the verification of the atmospheric fields

3.6.3 TO-BE strategy and mapping according to the INFINITECH way

Pilot #14 has a software logical schema that makes use of the following modules:

Table 14 - Pilot #14 mapping with INFINITECH Reference Architecture Group

INFINITECH Reference Architecture Group Component

Data Source (Octopush Service) Apache HTTP Server with PHP

(AgroApps Weather Engine) WRFv4.2

(AgroApps Weather Engine) WRFDA

(AgroApps Weather Engine) UPPv4.1

(AgroApps Weather Engine) METv9.1

Data Ingestion Data Integrator

Data Management (Business and GeospatialDB) PostgreSQL PostGIS

Data Security and Privacy

Blockchain and Information Sharing

Data Model and Semantics

Internet of Things

Analytics and Machine Learning (WebMAP Server) Geoserver

Interface (WebMAP Server) Apache Tomcat

(WebMAP Server) RESTful API

Cross Cutting

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 54 of 57

The translation of the logical schema into Kubernetes objects is defined as the first instance as follows:

Table 15 – Pilot #14 mapping with Kubernetes objects

Compon

ent

C
o

m
p

o
n

en
ts

ta
tu

s

C
o

n
fi

gm
ap

En
d

p
o

in
t

P
er

si
st

en
tV

o
lu

m
eC

l

ai
m

P
er

si
st

en
tV

o
lu

m
e

P
o

d
Te

m
p

la
te

Se
cr

et

Se
rv

ic
e

A
cc

o
u

n
t

Se
rv

ic
e

D
ae

m
o

n
se

t

D
ep

lo
ym

en
t

St
at

ef
u

ls
e

t

H
o

ri
zo

n
ta

lP
o

d
A

u
to

s

ca
le

r

C
ro

n
Jo

b

Jo
b

In
gr

es
s

(Octopus

h Service)

Apache

HTTP

Server

with PHP

 X

AgroApps

Weather

Engine

 X X X X X X

Data

Integrato

r

 X

PostGIS X

Geoserve

r
 X

WebMAP

Server
 X

AgroApps’ Weather Intelligence engine will be the only set of software that will be hosted on the NOVA

testbed due to an extrinsic constraint, therefore a sidecar deployment scenario is applied. As reported in the

previous table, the four instances of AgroApps Weather Engine are grouped into a single entry and launched

as a Statefulset, all the other components will only have Kubernetes Services of kind ExternalName. These

services, initialized into Pilot 14’s namespace, will work as network references to AgroApp’s managed

premises, and allow every sandbox module to deliver requests and receive responses from the remote

infrastructure.

3.7 Shared frameworks and dependency recurrency

From a first analysis of the information collected by the technical proxies and the pilots, it is possible to

extract an important consideration related to the use of all those framework and heavyweight standalone

dependencies that can be eligible to take part in the template of a shared sandbox within the NOVA testbed,

in particular, it is worth highlighting the frequent presence of the following technologies:

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 55 of 57

Figure 18 – Dependencies recurrency among pilots

The histogram in Figure 18 is flat, meaning that there are no emerging dependencies worth including in the

heavyweight shared frameworks sandbox. For the specific context of INFINITECH Sandboxes for FinTech and

InsuranceTech innovators there is no need to build a shared-dependencies sandbox within the NOVA

environment, but the concept can be applied in other cases where a new self-hosted testbed has to be

initialized to be federated to take part to the INFINITECH development process and to optimize the

consumption of the available resources.

© INFINITECH Consortium

4 Conclusions
This document D6.10 - Sandboxes for FinTech/InsuranceTech Innovators – I, has reported the first result of

INFINITECH WP6 Tasks T6.5 - FinTech/InsuranceTech Testbed Establishment and Customization.

It describes how specific machines provided by NOVA will be used for the first approach of testbed tailoring

on-premise within the INFINITECH project, where sandboxes for pilots 2, 11, 12, 13, 14 will be hosted.

Then the per-pilot process was documented to serve as a guideline to be adopted by future cases, and it

consists of three steps: (i) the definition of the objective and the overview of the pilot that is a piece of

information that provides the main idea behind the pilot at a glance; (ii) the first stage component

deployment which contains information about how the software and its dependencies (I.e. framework used,

3rd party software, etc...) are currently built and deployed, their requirements and compatibilities, their

condition in the network (I.e. the ports a certain service listens to); (iii) the TO-BE strategy mapping which

consumes all the information provided in the previous steps, combines them with the inputs coming from

the deliverable and produces the objects and the software configuration files, described in the document in

an easily readable diagram form, for the target environment (I.e. Kubernetes objects and templates). This

bundle of artifacts will generate the sandboxes that will be ready to be used during the whole development

process.

The work has been carried out in close cooperation and coordination with the other INFINITECH WP6 tasks

and work packages 2-3-4-5 tasks and partners, taking into account and integrating the delivered results as

inputs to this document, in accordance with the INFINITECH DoW.

The overall progress of such WP6 tasks will be one of the major drivers of the INFINITECH work package

dedicated to the Large Pilots Operations and Stakeholders Evaluation of the proposed Financial and Insurance

Services (WP7).

Within Tasks T6.5, two additional deliverables are expected at M24 and M33 respectively of the project

timeline. At M24 a report will be produced with all the technical details of the actual deployment of pilot

sandboxes for the second project iteration on the target NOVA infrastructure. At M33 it is planned a final

report that will gather basic and advanced metrics related to the usage of the sandboxes and the

infrastructure during the development activities of the pilots.

D6.10 – Sandboxes for FinTech/InsuranceTech Innovators - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 57 of 57

Appendix A: Literature
[1] Kubernetes. [Online]. Available: https://kubernetes.io/.

[2] Cilium. [Online]. Available: https://cilium.io/.

[3] «Hubble,» [Online]. Available: https://docs.cilium.io/en/v1.9/intro/#intro.

[4] VMware. [Online]. Available: https://www.vmware.com/.

[5] v. ESXi. [Online]. Available: https://www.vmware.com/products/esxi-and-esx.html.

[6] Vagrant. [Online]. Available: https://www.vagrantup.com/.

[7] «Terraform,» [Online]. Available: https://www.terraform.io/.

[8] «Terraform homepage,» HashiCorp, [Online]. Available:

https://www.terraform.io/docs/language/files/index.html.

[9] «Oralce Virtual Box,» [Online]. Available: https://www.virtualbox.org/.

[10] «VMware Workstation,» [Online]. Available: https://www.vmware.com/products/workstation-

pro.html.

[11] Ruby. [Online]. Available: https://www.ruby-lang.org/en/.

[12] «EC",» [Online]. Available: https://aws.amazon.com/ec2/instance-types/.

[13] «HCL,» [Online]. Available: https://www.terraform.io/docs/configuration-0-11/syntax.html.

[14] «Cloning,» [Online]. Available: https://sdorsett.github.io/post/2018-12-24-using-terraform-to-

clone-a-virtual-machine-on-vsphere/).

[15] «rancher,» [Online]. Available: https://rancher.com/.

[16] «CNCF,» Linux Foundation, [Online]. Available: https://www.cncf.io/.

[17] «Open-LDAP,» Openldap Foundation, [Online]. Available: https://www.openldap.org/.

[18] «MetalLB,» [Online]. Available: https://metallb.org/.

[19] «HELM,» [Online]. Available: https://helm.sh/.

[20] «GitLab homepage,» GitLab, [Online]. Available: https://about.gitlab.com/.

[21] «Harbor homepage,» Linux Foundation, [Online]. Available: https://goharbor.io/.

[22] «Jenkins homepage,» [Online]. Available: https://www.jenkins.io/.

[23] https://kubernetes.io/docs/concepts/services-networking/service/#choosing-your-own-ip-address

