
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D4.4 – Semantics Streams Analytics Engine - I

Lead Beneficiary NUIG
Task Reference T4.2
Revision Number 1.0
Deliverable Type Report (R)
Dissemination Level Public (PU)
Due Date 2020-08-30
Delivered Date 2020-12-30
Internal Reviewers LINX, NUIG-Insight

Quality Assurance INNOV

Review Status Internally Reviewed and Quality Assurance Reviewed

Acceptance WP Leader Accepted and/or Coordinator Accepted
EC Project Officer Pierre-Paul Sondag

HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement no 856632

Ref. Ares(2021)3129072 - 10/05/2021

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 69

Contributing Partners

Partner
Acronym

Role Author(s)

NUIG Lead Beneficiary Martin Serrano
Yasar Khan
Alex Acquier

NOVA Beneficiary Gionanni Di Orio
Guilherme Brito
Pedro Malo

Revision History
Version Date Partner(s) Description
0.1 2020-08-08 NUIG ToC Version
0.2 2020-08-08 NUIG, N OVA Updated ToC with requested contributions

Standard Vocabularies form Stakeholders
on Hold until new online events are
organised

0.3 2020-09-09 NOVA Updated contributions
0.4 2020-10-10 NUIG Integration of contributions

Vocabularies form D4.1 integrated
0.5 2020-11-11 NUIG Additional contributions on FIBO, FIGI and

LKIF vocabularies and taxonomies
0.6 2020-11-11 NUIG Updates in Section 1,

Section 3 and Section 4
0.7 2020-12-20 NUIG Contributions in Section 4 and Section 5
0.8 2020-12-23 NUIG Final Contributions in Section 5
0.9 2020-12-23 NUIG, INNOV First Version for Internal Review
0.95 2020-12-23 NUIG, LINX Version for Quality Assurance
1.0 2020-12-23 NUIG Version for Submission

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 69

Executive Summary
This deliverable introduces the INFINITECH Semantics Streams Analytics Engine (SeSA-ME) and the
related tools for enabling semantic data exchange, which is based on the development of an
interoperability (ontology-based) database/registry supporting linking of diverse systems and
datasets based on shared semantics, as well as semantically interoperable analytics. The Prototype
implementation of the engine has been produced as part of the WP4 Task 4.2 activities.

The Semantic Engine is an extension of the Super Stream Collider (SSC) tool, which provides a set of
web-based interfaces and tools for building data mashups combining semantically annotated Linked
Stream and Linked Data sources into easy-to-use data mashups for applications. The SeSA-ME
system includes tools along with a visual SPARQL query editor using Swagger APIs and visualization
tools for novice users while supporting full access and control over the data mashups for expert
users. Tied with the development of the SeSA-ME platform is the development and deployment of
the INFNITECH Graph Data Model which enables the support for both the design and deployment
of stream-based web applications in a very simple and intuitive way and the analytics services using
stream-based applications and services. In this deliverable we also introduce the INFINITECH Graph
Data Model as an Ontology or set of Standards Ontologies:

(a) to model and represent Finance and Insurance concepts with additional concepts in related
relevant areas – e.g., from the Security Transactions domain, Security and Privacy domain – within
the INFINITECH project stakeholders,

(b) to enable the semantic interoperability between Internet-connected objects for Finance
and Insurance applications in diversity of applications and services settings, and

(c) to enable the application of analytics services and reasoning algorithms for seamless
automated information exchange for more complex services and combined applications.

INFINITECH Graph Data Model is composed by following Core ontology standards, such as FIBO, FIGI
and LKIF standards and we bootstrap the implementation and deployment of the Semantic Analytics
Engine from those existing efforts towards the ontological descriptions of concepts, applications
and online services, etc. relevant for the INFINITECH project pilots.

As a result of the COVID-19 pandemics, this deliverable suffered a delay in submission, mainly
because the data models that defined the basic vocabularies from the various involved domains,
which were initially planned to be collected by organising events with the different stakeholders,
were moved to be online and delayed and thus the collection and selection of the baseline
vocabularies and the selection of the taxonomies using the current standards in the fintech domains
were also delayed. This situation delayed the submission of this deliverable as agreed and informed
to the consortium. However, this delay did not affect the overall progression of the project because
the involvement of pilots and their stakeholder came few months later and thus pilot’s stakeholders
got engaged in the General Assembly online meetings of the INFINITECH project.

This document is the first version of three where the basic services and tools for data
interoperability and their use in particular use cases or pilots are described. In this document the
specification of the SeSA-ME component is provided as an open implementation that can be used
when data sharing and data exchange is required. It is planned that this first version of the document
is used as reference implementation that can be extended for particular purposes at the pilot level
following stakeholder’s requirements from particular domains where semantic interoperability
seems to be an alternative to resolve some of the issues identified and described in this document.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 69

Table of Contents

1 Introduction .. 9

1.1 Objective of the Deliverable .. 9

1.2 Insights from other Tasks and Deliverables ... 10

1.3 Structure .. 10

2 Background Knowledge and Pre-requisites .. 11

2.1 Linked Data .. 11

2.2 Resource Description Framework & Serialisation Formats .. 11

2.2.1 The RDF Data Model ... 12

2.2.2 Serialisation Formats .. 12

2.2.2.1 RDF/XML ... 13

2.2.2.2 Turtle .. 13

2.2.2.3 N-Triples .. 13

2.2.2.4 RDFa .. 14

2.3 SPARQL: Querying Linked Data .. 14

2.4 Web of Data ... 16

2.5 Data Integration ... 17

2.6 Ontologies .. 18

2.6.1 Basic Concepts .. 18

2.6.1.1 Vocabulary .. 18

2.6.1.2 Taxonomy ... 18

2.6.1.3 Ontology ... 19

2.6.2 Semantics for the Web of Data ... 20

2.6.2.1 RDFS. ... 20

2.6.2.2 OWL. ... 21

2.6.3 Modularisation of Ontologies ... 22

2.6.4 Operations with Ontologies .. 23

2.6.4.1 Mapping of ontologies .. 23

2.6.4.2 Alignment of ontologies ... 23

2.6.4.3 Ontology inheritance .. 23

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 69

3 Related Work ... 24

3.1 Super Stream Collider (SSC) ... 24

3.2 Basic Design Principles for Building Mashups .. 26

3.2.1 Use of Uniform Resource Identifiers (URIs) as names. ... 26

3.2.2 Use HTTP URIs, so that names can be looked up by using those URIs. 27

3.2.3 Provide useful information, using the RDF standard, for looking up for URIs. 27

3.2.4 Include links to other URIs, so that they can discover more things. 27

3.3 Semantics for the Finance and Insurance Sector ... 28

3.4 Mash-up Building Features .. 28

4 SeSA-ME Specification and Implementation ... 29

4.1 SeSA-ME Architecture .. 29

4.1.1 Source Selection ... 29

4.1.2 Query Planner ... 31

4.1.3 Query Builder .. 33

4.1.4 Query Executor ... 34

4.1.5 Stream Processor .. 36

4.1.6 Access Policy Framework .. 37

4.2 SeSA-ME APIs ... 39

4.2.1 Static Data APIs ... 39

4.2.1.1 Know Your Customer (KYC) Profiler .. 39

4.2.1.1.1 KYC Data Providers ... 39

4.2.1.1.2 KYC Data Consumers .. 41

4.2.1.1.3 Identity Verification ... 49

4.2.1.1.4 Business Verification .. 54

4.2.2 Streaming Data APIs ... 59

4.2.2.1 Stream Registration .. 59

4.3 Semantic Annotator-Middleware Pre-processing Layer for FinTechs - SAMPLE-FIN 61

4.3.1 Data Transformation Guide .. 61

4.3.2 Step 1: Selecting Ontologies ... 61

4.3.2.1 FIBO .. 61

4.3.2.2 FIGI .. 61

4.3.2.3 LKIF ... 62

4.3.2.4 INFINITECH Core ... 62

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 69

4.3.3 Step 2: Mapping Native Data to Selected Ontologies ... 63

4.3.3.1 RML: RDF Mapping language .. 63

4.3.3.2 RML Editor .. 63

4.3.3.3 R2RML: RDB to RDF Mapping Language ... 63

4.3.4 Step 3: Generating RDF ... 64

4.3.4.1 RMLMapper .. 64

4.3.5 Step 4: Making data queryable ... 64

4.3.6 Step 5: Data Transformation Example .. 64

4.3.6.1 MAPPINGS .. 65

4.3.6.2 RDF DATA .. 66

5 Conclusions ... 67

6 References ... 68

List of Figures

FIGURE 1. RDF TRIPLE IN GRAPH REPRESENTATION DESCRIBING “FINANCEOPERATION MEASURES 100 EURO.” 12

FIGURE 2. SIMPLE RDF GRAPH INCLUDING THE EXAMPLE RDF TRIPLE. .. 12

FIGURE 3. RDF/XML SERIALISATION EXAMPLE ... 13

FIGURE 4. TURTLE SERIALISATION EXAMPLE .. 13

FIGURE 5. N-TRIPLES SERIALISATION EXAMPLE .. 14

FIGURE 6. RDFA SERIALISATION EXAMPLE ... 14

FIGURE 7. SIMPLE SPARQL QUERY UTILISING BASIC GRAPH PATTERNS .. 15

FIGURE 8. EXAMPLE SPARQL 1.0 QUERY .. 15

FIGURE 9. EXAMPLE SPARQL 1.1 QUERY .. 16

FIGURE 10. EXAMPLE MODULARISATION OF ONTOLOGIES. ... 22

FIGURE 11. SUPER STREAM COLLIDER PLATFORM ARCHITECTURE .. 24

FIGURE 12. SUPER STREAM COLLIDER FUNCTIONAL BLOCKS. .. 25

FIGURE 13. SUPER STREAM COLLIDER MASHUPS BUILDER ... 25

FIGURE 14. SEMANTIC STREAM ANALYTICS MIDDLEWARE-ENGINE ARCHITECTURE ... 29

FIGURE 15. SEMANTIC STREAM ANALYTICS MIDDLEWARE-ENGINE API SERVICES ... 39

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 69

List of Tables
TABLE 1: SOURCE SELECTION - COMPONENT DESCRIPTION AND API DOCUMENTATION 29
TABLE 2: QUERY PLANNER – COMPONENT DESCRIPTION AND API DOCUMENTATION 31
TABLE 3: QUERY BUILDER - COMPONENT DESCRIPTION AND API DOCUMENTATION 33
TABLE 4: QUERY EXECUTOR - COMPONENT DESCRIPTION AND API DOCUMENTATION 34
TABLE 5: STREAM PROCESSOR - COMPONENT DESCRIPTION AND API DOCUMENTATION 36
TABLE 6: ACCESS POLICY FRAMEWORK - COMPONENT DESCRIPTION AND API DOCUMENTATION 37
TABLE 7: EXAMPLE DATA SOURCE REGISTRATION INFORMATION .. 40
TABLE 8: EXAMPLE REGISTER DATA SOURCE FUNCTIONALITY AND URL NOTATION ... 40
TABLE 9: EXAMPLE KYC DATA CONSUMER METHOD USING JSON SCHEMA .. 40
TABLE 10: EXAMPLE TEMPLATE FOR IDENTITY VERIFICATION ... 41
TABLE 11: EXAMPLE TEMPLATE FOR BUSINESS VERIFICATION .. 42
TABLE 12: EXAMPLE GET TEMPLATE FUNCTIONALITY AND URL NOTATION .. 42
TABLE 13: EXAMPLE IDENTITY VERIFICATION METHOD USING JSON SCHEMA ... 42
TABLE 14: EXAMPLE GET LIST OF FIELDS FUNCTIONALITY AND URL NOTATION ... 46
TABLE 15: EXAMPLE BUSINESS VERIFICATION METHOD USING JSON SCHEMA .. 46
TABLE 16: EXAMPLE VERIFY CUSTOMER IDENTITY FUNCTIONALITY AND URL NOTATION 49
TABLE 17: EXAMPLE VERIFY CUSTOMER IDENTITY METHOD USING JSON SCHEMA ... 49
TABLE 18: EXAMPLE VERIFY BUSINESS API FUNCTIONALITY AND URL NOTATION .. 54
TABLE 19: EXAMPLE VERIFY BUSINESS METHOD USING JSON SCHEMA .. 55
TABLE 20: EXAMPLE REGISTER FOR STREAMS API FUNCTIONALITY AND URL NOTATION 59
TABLE 21: EXAMPLE REGISTER FOR STREAMS METHOD USING JSON SCHEMA .. 60
TABLE 22: FIBO USEFUL LINKS ... 61
TABLE 23: FIGI USEFUL LINKS .. 62
TABLE 24: LKIF USEFUL LINKS .. 62
TABLE 25: INFINITECH CORE USEFUL LINKS .. 62
TABLE 26: RDF MAPPING LANGUAGE USEFUL LINKS .. 63
TABLE 27: RML EDITOR USEFUL LINKS .. 63
TABLE 28: RDB 2 RDF MAPPING LANGUAGE USEFUL LINK .. 64
TABLE 29: RML MAPPER USEFUL LINK .. 64
TABLE 30: TRIPLE STORES USEFUL LINKS .. 64
TABLE 31: EXAMPLE CUSTOMER TABLE ... 65
TABLE 32: DATA MAPPING EXAMPLE .. 65
TABLE 33: EXAMPLE RDF DATA .. 66

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 69

Abbreviations/Acronyms

AI Artificial Intelligence
CQELS Continuous Query Evaluation over Linked Streams
DnS Descriptions and Solutions
DOI Digital Object Identifier
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DUL DOLCE+DnS Ultralite
FIBO Financial Industry Busines Ontology
FIGI Financial Instrument Global Identifier
FOAF Friend of a Friend
GIS Geographic information system
GSN Global Sensor Networks
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
ICT Information and Communications Technology
LD Linked Data
LKIF Legal Knowledge Interchange Format
LOD Linking Open Data
MIME Multipurpose Internet Mail Extensions
NOAA National Oceanic and Atmospheric Administration
OGC Open Geospatial Consortium
OMG Object Management Group
OWL Web Ontology Language
RDF Resource Description Framework
RDFS RDF Schema
RFS Request for Service
SaS Sensing-as-a-Service
SIOC Semantically Interlinked Online Communities
SLA Service Level Agreement
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
TaS Traceability-as-a-Service
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifiers
URN Uniform Resource Name
USB Universal Serial Bus
W3C World Wide Web Consortium
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 69

1 Introduction
This deliverable introduces the INFINITECH Semantics Streams Analytics Engine (SeSA-ME) and the
related tools for enabling semantic data exchange, which is based on the development of an
interoperability (ontology-based) database/registry supporting linking of diverse systems and
datasets based on shared semantics, as well as semantically interoperable analytics.

The Semantic Stream Analytics Middleware-Engine (SeSA-ME) is an extension of the Super Stream
Collider (SSC) platform and tools, The SeSA-ME system includes tools along with a visual SPARQL
query editor using Swagger APIs and visualization tools for novice users while supporting full access
and control over the data mashups for expert users. The development of the SeSA-ME platform
requires the use of an associated data model, thus it is also part of this development the
development and deployment of the INFINITECH Graph Data Model which follows the specifications
from D4.1. The INFINITEC Graph Data Model enables supporting both the design and deployment
of stream-based web applications in a very simple and intuitive way and the extension to analytics
services using stream-based applications and services.

The INFINITECH Graph Data Model is an Ontology or set of Standard Ontologies with the specific
purpose as briefly described as follow: (a) to model and represent Finance and Insurance concepts
with additional concepts in related relevant areas – e.g., from the Security Transactions domain,
Security and Privacy domain – within the INFINITECH project stakeholders, (b) to enable the
semantic interoperability between Internet-connected objects for Finance and Insurance
applications in diversity of applications and services settings, and (c) to enable the application of
analytics services and reasoning algorithms for seamless automated information exchange for more
complex services and combined applications.

INFINITECH Graph Data Model is composed by the INFINITECH Core ontology and standard
vocabularies following FIBO, FIGI and LKIF standards and that we bootstrap by providing the
implementation and deployment of the Semantic Stream Analytics Engine from those existing
ontological descriptions of concepts, providing applications and online services, etc. relevant for the
INFINITECH project pilots.

1.1 Objective of the Deliverable
This deliverable introduces the Semantic Stream Analytics Engine (SeSA-ME) as a framework and
tool for interoperability and data exchange. This deliverable also introduces and describe the
INFINITECH Core Ontology, it also refers to the Financial Industry Busines Ontology (FIBO) from the
EDM council, the Financial Instrument Global Identifier (FIGI), an established global standard issued
under the guidelines of the Object Management Group (OMG) and the Legal Knowledge Interchange
Format (LKIF) Ontologies. The reference to these ontologies derives from (a) the requirements
derived from the use case descriptions, i.e. the involved concepts and relationships between them
identified in Task 4.1, (b) the set of related ontologies relevant to INFINITECH identified in task 4.2
and (c) the relevance of some terms used in different domains that can be used for exchange data,
“relevance” refers to the overlap between the concepts and relationships of the INFINITECH use
cases in the different domains (i.e. finance and insurance for example) and the ones described by
the existing ontologies. The first step towards the definition of the INFINITECH Graph Data Model is
the selection of a minimum set of available ontologies that allow for describing of the INFINITECH
uses cases. The second step then refers to the relevance of the different terms that are used but
that overlap for the same purpose in different domains and the third is the alignment, if necessary,
of the different selected ontologies.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 69

1.2 Insights from other Tasks and Deliverables
This deliverable is a report that describes the implementation of an online semantic framework that
makes use of the data model principles described in the Deliverable D4.1, the methodology for
Ontology Engineering introduced is also important and recommended for novels in the semantics
area but also experts in semantics are invited to look the provided semantic framework to review
the different INFINNITECH concepts for the related project domain areas.

This deliverable makes use of basis and foundation on INFINITECH Semantic Interoperability
Framework, introduced and explained in the Deliverable D4.1, where basic data models are
described from one side - the main approach to interoperability used in INFINTECH and - from the
other side - the INFINITECH methodology for Semantic Models and Ontologies Engineering and
Prototyping. As a result of the COVID-19 pandemics the data models that used the basic
vocabularies from the various stakeholders, that initially were planned to be collected by organising
events with the different stakeholders, were delayed and thus the prosecution of the baseline
vocabularies and their contracts with the current standards was delayed, a situation that delayed
the submission of this deliverable but that helped to confirm and consolidate the involvement of
pilot stakeholders which got engaged in the General assembly online meetings of the INFINITECH
project.

This deliverable refers to section 4 in the Deliverable D4.2, where INFINITECH Core Data Model &
Semantic Alignments are included, this section provides an overview of the relevant FIBO, FIGI and
LKIF standard ontologies for the INFINITECH application domains while highlighting the concepts,
terms and vocabularies that will be part of the INFINITECH core semantic models.

1.3 Structure
The overall content of this document focuses on the design, implementation and deployment of the
Semantic Stream Analytics Engine (SeSA-ME), however a comprehensive analysis and overall
information around related areas to graph data modelling, stream processing and data mashups
building is provided. Section 2 outlines the background knowledge needed to understand the major
topics addressed in this deliverable. The first part covers the notion of Linked Data unifying principle
for sharing and linking data from different sources; the second part introduces ontologies and the
state-of-the-art concept to add semantics to data for enabling data discovery and reasoning over
the annotated data and outlines the ontological requirements derived from the INFINITECH use
cases and relates them with the INFINITECH ontology/vocabulary. Section 3 reviews related work.
This mainly includes existing works towards adding semantics to the finance sector addressing the
overview of the most used standards, as well as an overview to existing stream and mashup builders’
platforms together with a brief outline how interoperability and heterogeneity is addressed in these
platforms. Section 4 represents the core part of the deliverable, introducing the SeSA-ME
Specification. The rationale is that SeSA-ME follows the recommended best-effort practice to reuse
existing, popular ontologies/vocabularies as much as possible. For each included vocabulary, the
corresponding subsection highlights the basic defined concepts and relationships between concepts
and argues the potential relevance for INFINITECH project. Section 5 present the conclusions and
present some pointers in how the INFINTECH SeSA-ME component will follow the sandboxes design
in the INFINITECH project and outlines the support of pilots following the proposed methodology.
Section 6 includes a list of relevant references alike the ones used across this document.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 69

2 Background Knowledge and Pre-requisites
Semantic Streams and Mashups Processing requires a basic know-how on data modelling and
processing. This section describes the basic concepts that are used in this deliverable and also in the
design and implementation of the Semantics Streams Analytics Engine (SeSA-ME) architecture, it
also follow the design principles for high level architectures [Boots 2017]. It is highly recommended
to follow these sections carefully not only to understand the different terms and concepts
introduced but also to understand the use of the semantics in the context of the INFINITECH Graph
Data model construction.

2.1 Linked Data
Linked Data is the basic mechanism recognised in the semantic web that is used for Data Sharing
and Data Exchange when implementing semantic web applications [Heitman 2009], it is not until
recently that in the landscape of data on the Web, Linked Data was comprised by the existence of
self-contained data repositories (Data Silos). Basically, each Web application or platform used to
maintain its own repository, even if there was a significant overlap between these datasets and data
that was publicly accessible. From a knowledge and information retrieval perspective. The
integration of different kinds of data sources yields significant added value. However, the use of
different formats and different technologies has made such integration challenging and even today
it remains as one of the principal challenges for data sharing.

These challenges spurred the development and success of the concept of a process that allows to
logically define and practically establish connections between parts of the information. For instance
this is the case of a location of a person with a nationality according to that geographically location.
This process that may sound trivial but that without the proper context, this association cannot be
done. Let us think in the way a person learns for the first time that someone that was born in a
country has a nationality associated to it since the day he or she was born there. What if this person
decided to migrate to another country where he spent a defined period of time and his nationality
is granted by the time of residence in that new location, a new relationship will be established.

Linked Data [LOD-Project] is the mechanism that helps to define and establish those relationships.
This concept describes a method of publishing all kinds of structured data so that it can be
interlinked and become more useful in the form of accessible online documents that contains those
relationships and definitions that are helpful for machine-readable solutions and humans, giving the
priority to humans-centric because yet it will be a support to understand multiplicity of the use with
the purpose of data interoperability functions (i.e. sharing, exchange, access, etc.) and also
supporting machine-driven solutions.

Linked Data is built upon standard Web technologies such as HTTP and URIs, but rather than using
them to serve web pages for human readers, it extends them to share information in a way suitable
for reading them automatically by computers. This enables data from different sources to be
connected and queried.

2.2 Resource Description Framework & Serialisation Formats
Linked Data is based on the notion of describing real world things using the Resource Description
Framework (RDF)[W3C-RDF]. The following paragraphs introduce the basics about RDF model, and
then outline existing formats to serialise data modelled in RDF.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 69

2.2.1 The RDF Data Model

RDF is considered a simple, flexible, and schema-less model suitable to express and process a series
of simple assertions. Consider the following finance data related example: “FinanceOperartion
measures 100.00 Euro.” Each statement, i.e., piece of information, is represented in the form of
triples (RDF triples) that link a subject (“FinaceOperation”), a predicate (“measures”), and an object
(“100.00Euro”). The subject is the thing that is described, i.e., the resource in question. The
predicate is a term used to describe or modify some aspect of the subject. It is used to denote
relationships between the subject and the object. The object is, in RDF, it’s the “target” or “value”
of the triple. It can be another resource, or just a literal value such as a number or word.
In RDF, resources are represented by Uniform Resource Identifiers (URIs). The subject of RDF triples
must always be a resource. The typical way to represent an RDF triple is a graph, with the subject
and object being nodes and the predicate a directed edge from the subject to the object. So, the
above example statement could be turned into an RDF triple illustrated in Figure 1.

Figure 1. RDF triple in graph representation describing “FinanceOperation measures 100 Euro.”

Since objects can also be resources with predicates and objects on their own, single triples are
connected to a so-called RDF graph. In terms of graph theory, the RDF graph is a labelled and
directed graph. As illustration we extend the previous example, replacing the literal “100Euro” by a
resource “Measurement” for the object in the RDF triple in Figure 1. The resource itself has two
predicates assigning a unit and the actual value to the measurement. The unit is again represented
by a resource and the value is a numerical literal. The resulting RDF graph looks as follows:

Figure 2. Simple RDF graph including the example RDF triple.

2.2.2 Serialisation Formats

The RDF data model itself does not describe the format in which the data, i.e., the RDF graph
structure, is stored, processed, or transferred. Several formats exist, whose purpose is to serialise
RDF data; the following overview list the most popular formats, including a short description about
their main characteristics and examples.

Figure 2 shows a simple RDF graph to serve as a starting point for the explanations.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 69

2.2.2.1 RDF/XML
The RDF/XML syntax [W3C-RDF] is standardised by the W3C and is widely used to publish Linked
Data on the Web. On the downside however, the XML syntax is also regarded as difficult for humans
to read and write. This indicates a need for consideration of (a) other serialisation formats in data
management and control workflows that involve human intervention and (b) the provision of
alternative serialisations for consumers who may wish to examine the raw RDF data. The RDF/XML
syntax is described in detail as part of the W3C RDF Primer. The MIME type that should be used for
RDF/XML within HTTP content negotiation is application/rdf+xml. The listing shown in Figure 3
below shows the RDF/XML serialisation for the RDF graph.

<?xml version="1.0"?>
<rdf:RDF xmlns:ex="http://www.example.org/"
<rdf:Description rdf:about=" http://www.example.org/FinaceOperation">
 <ex:title>100.00Euro</ex:title>
</rdf:Description>
</rdf:RDF>

Figure 3. RDF/XML Serialisation Example

2.2.2.2 Turtle
Turtle (Terse RDF Triple Language) [W3C-Turtle] is a plain text format for serialising RDF data. It
provides support for namespace prefixes and other shorthands, making Turtle typically the
serialisation format of choice for reading RDF triples or writing them by hand. A detailed
introduction to Turtle is given in the W3C Team Submission document Turtle. It was accepted as a
first working draft by the World Wide Web Consortium (W3C) RDF Working Group in August 2011,
and parsing and serialising RDF data is supported by many RDF toolkits. The MIME type for Turtle is
text/turtle;charset=utf-8. The Figure 4 shows the serialisation listing for the example RDF graph in
Turtle syntax.

@prefix : <http://www.example.org/> .
:FinanceOperation :measures “100Euro”

Figure 4. Turtle Serialisation Example

2.2.2.3 N-Triples
The N-Triples syntax [W3C-N-Triples] is a subset of Turtle, excluding features such as namespace
prefixes and shorthands. Since all URIs must be specified in full in each triple, this serialisation
format involves a lot of redundancy, typically resulting in large N-Triples particularly compared to
Turtle but also to RDF/XML. This redundancy, however, enables N-Triples files to be parsed one line
at a time, benefitting the loading and processing of large data files that will not fit into main memory.
The redundancy also allows compressing N-Triples files with a high compression ratio, thus reducing
network traffic when exchanging files. These two factors make N-Triples the de facto standard for
exchanging large dumps of Linked Data. The complete definition of the N-Triples syntax is given as
part of the W3C RDF Test Cases recommendation. The following listening in Figure 5 represents the
N-Triples serialisation of the example RDF graph.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 69

<http://www.example.org/FinancerOperation>
 <http://www.example.org/measures>
 “100Euor”@en-IE .

Figure 5. N-Triples Serialisation Example

2.2.2.4 RDFa
RDFa [W3C-RDFa] allows embedding RDF triples directly in (X)HTML documents using a set of
attributes of the (X)HTML elements. The RDF data is not embedded in comments within the HTML
document but interwoven within the HTML Document Object Model (DOM). This means that
existing content within the page can be marked up with RDFa by modifying HTML code, thereby
exposing structured data to the Web. It doesn’t require separate documents, but instead allows
people to add structure to an existing content. A detailed introduction into RDFa is given in the W3C
RDFa Primer. RDFa is popular in contexts where data publishers can modify HTML templates but
have relatively little additional control over the publishing infrastructure. The RDFa serialisation
shown in the example RDF graph is shown in the listening below as Figure 6. To ease presentation,
all example used throughout this document are written in the Turtle syntax. This includes the usage
of the following namespaces.

@prefix ssn:<http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .
@prefix spitf:<http://spitfire−project.eu/ontology/ns#> .
@prefix dul :<http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#> .
@prefix f:<http://events.semantic-multimedia.org/ontology/2008/12/15/model.owl#> .
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl:<http://www.w3.org/2002/07/owl#> .
@prefix xsd:<http://www.w3.org/2001/XMLSchema#> .
@prefix:<http://www.example.org/ns#> .
@prefix muo:<http://purl.oclc.org/NET/muo/muo#> .
@prefix ucum-unit:<http://purl.oclc.org/NET/muo/ucum/unit/> .
@prefix unit:<http://www.w3.org/2007/ont/unit#> .
@prefix foaf:<http://xmlns.com/foaf/0.1/> .
@prefix dbpedia:<http://dbpedia.org/ontology> .
@prefix ao:<http://purl.org/ontology/ao/associationontology.html#> .
@prefix sweet:<http://sweet.jpl.nasa.gov/2.2/sweetAll.owl#> .

Figure 6. RDFa Serialisation Example

2.3 SPARQL: Querying Linked Data
SPARQL (SPARQL Protocol and RDF Query Language) [W3-SPARQL] is the most popular query
language to retrieve and manipulate data stored in RDF, and it became an official W3C
Recommendation in 2008. Depending on the purpose, SPARQL distinguishes the following for query
variations:

• SELECT query: extraction of (raw) information from the data
• CONSTRUCT query: extraction of information and transformation into RDF
• ASK query: extraction of information resulting in a True/False answer

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 69

• DESCRIBE query: extraction of RDF graph that describes the resources found

Given that RDF forms a directed, labelled graph for representing information, the most basic
construct of a SPARQL query is a so-called basic graph pattern. Such a pattern is very similar to an
RDF triple with the exception that the subject, predicate or object may be a variable. A basic graph
pattern matches a subgraph of the RDF data when RDF terms from that subgraph may be
substituted for the variables and the result is RDF graph equivalent to the subgraph. Using the same
identifier for variables also allow combining multiple graph patterns. To give an example, the
SPARQL query returns the name of all pairs of people where ?person1 knows ?person2 (note that
foaf:knows is not defined as symmetric relation) see this in Figure 7 as follow:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
FROM <http://example.org/foaf>
WHERE {
 ?person1 foaf:knows ?person2 .
 ?person1 foaf:name ?name1 .
 ?person2 foaf:name ?name2 .
}

Figure 7. Simple SPARQL query utilising basic graph patterns

Besides the aforementioned graph patterns, the SPARQL 1.0 standard also supports the sorting
(ORDER BY), and the limitation of result sets (LIMIT, OFFSET), the elimination of duplicates
(DISTINCT), the formulation of conditions over the value of variables (FILTER), and the possibility to
declare a constraint as OPTIONAL. As an illustration, we modify the example query in Figure 7. The
query now depicted in Figure 8 retrieves all persons that Alice knows including, if available, the URL
of their homepages. The results are sorted with respect to the name of know persons, and finally
limited to the first 20 entries.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?hpage
FROM <http://example.org/foaf>
WHERE {
 ?person1 foaf:knows ?person2 .
 ?person1 foaf:name “Alice” .
 ?person2 foaf:name ?name .
 OPTIONAL { ?person2 foaf:hompage ?hpage }
}
ORDER BY ?name
LIMIT 20

Figure 8. Example SPARQL 1.0 query

The SPARQL 1.1 standard significantly extended the expressiveness of SPARQL. In more detail the
new features include

• Grouping (GROUP BY), and conditions on groups (HAVING)
• Aggregates (CONT, SUM, MIN, MAX, AVG, etc.)
• Subqueries to embed SPARQL queries directly within other queries
• Negation to, e.g., check for the absence of data triples
• Project expression, e.g., to use numerical result values in the SELECT clause within a

mathematical formulas and assign new variable names to the result
• Update statements to add, change, or delete statements

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 69

• Variable assignments to bind expressions to variables in a graph pattern
• New built-in functions and operators, including string functions (e.g., CONCAT, CONTAINS),

string digest functions (e.g., MD5, SHA1), numeric functions (e.g., ABS, ROUND), or
date/time functions (e.g., NOW, DAY, HOURS)

Again, to give a short example, the query in Figure 9 counts for each person the number of contacts,
i.e., the number of others each person knows. Note that we can use a blank node (_:a), i.e., generic
placeholder, since we were in this case not interested in any additional information about contacts.
The results are sorted with respect to the number of contacts in a descending manner.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name COUNT(*) AS ?numberOfContacts
FROM <http://example.org/foaf>
WHERE {
 ?person foaf:knows _:a .
 ?person foaf:name ?name .
}
GROUP BY ?name
ORDER BY DESC(COUNT(*))

Figure 9. Example SPARQL 1.1 query

2.4 Web of Data
The Web of Data, or the Semantic Web, is the continuously growing result of the Linked Data idea
and goals. A large and increasing number of individuals, organisations, public bodies, etc. publish
their data in line with the principles of Linked Data, instead of just putting them on the Web as
content of traditional websites. Due to the links between resources of different data sources, the
Web of Data can be seen as giant RDF graph forming a unified, global data space. At the time of
writing, this RDF graph contains billions of triples spanning all kinds of knowledge domains.

The Web of Data can before being described by the following characteristics:

1) Generic: The simple data model of RDF can contain any type of data and enables the
implementation of generic tools for data access and discovery as well as the
implementation of generic optimisation techniques.

2) Open: There are no access restrictions to the Web of Data. Anyone can publish data as
Linked Data, create links to other data sources, and thus contribute to the Web of Data
RDF graph.

3) Unconstrained: The Web of Data can contain statements that represent a disagreement
or a contradiction about described resources.

4) Flexible: The Web of Data does not constrain or limit data publishers to a specific set of
vocabularies with which to represent their data. Publishers can choose their own
vocabulary and can also combine or extend them.

5) Self-describing: If an application consuming Linked Data encounters data described with
an unfamiliar vocabulary, the application can dereference the URIs that identify
vocabulary terms to find their definition.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 69

6) Standardised: All underlying technologies of the Web of Data, including RDF for
modelling the data and HTTP for accessing the data, are standardised. This simplifies the
data access and processing compared to Web APIs that rely on heterogeneous data
models and access interfaces.

The origins of this Web of Data lie in the efforts of the Semantic Web research community and
particularly in the activities of the W3C Linking Open Data (LOD) project [LOD-Project], a grassroots
community effort founded in January 2007. The founding aims of the project, which has spawned a
vibrant and growing Linked Data community, was to bootstrap the Web of Data by identifying
existing data sets available under open licenses, convert them to RDF according to the Linked Data
principles, and to publish them on the Web. As a key principle, the project has always been open to
anyone who publishes data according to the Linked Data principles. This openness is a likely factor
in the success of the project in bootstrapping the Web of Data.

2.5 Data Integration
The main aspired benefit of the Linked Data idea lies in the interlinking of data between different
sources, eventually resulting in the Web of Data. On the “traditional” Web, the user can browse
information without any knowledge of the underlying technical structure, and the browsing
experience is seamless even when linking from one website to another. Similarly, with Linked Data,
it should be possible to browse datasets, and link from one dataset to another, even if they are
stored in different places and in different formats. The applied technologies and the resulting
characteristics in terms of data, however, involve several challenges when it comes to integrating
different data sources, some listed as follow:

1) The flexible modelling of information, in general, implies that the same kind of information
can be modelled in more than one way. For example, the home of a person can be modelled
by linking the resource describing the person to literal nodes containing the street name,
house number, etc., or linking the resource to a dedicated address resource which itself then
has links to the specific address information.

2) If two different data sources contain information resources referring to the same real-world
concepts, these resources are typically identified via different URIs. Thus, in different data
sources the same real-world concept is often represented differently. There is not inherent
connection between the corresponding resources.

3) Publishers of Linked Data might user different vocabularies, i.e., speak a different language.
For example, a contact relationship between persons can be names as “has-contact”,
“knows”, “is-acquainted-with”, or similar. Although the semantics between these notions is
the same – and is understandable for humans – the different syntax makes the integration of
this information difficult at the machine level.

Given these challenges, basic best-practice techniques have been formulated and are promoted.
Firstly, while anyone is free to provide their own ontology, Linked Data publishers are encouraged
to use existing ontologies as much as possible. In a nutshell, ontologies define the basic terms (i.e.,
the vocabulary) and relations of a domain of interest, as well as the rules for combining these terms
and relations. Ontologies are used for communication between people and organisations by
providing a common terminology over a domain. They provide the basis for interoperability

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 69

between systems. The idea of reusing existing ontologies resulted in the definition of ontologies
typically addressing terms of a specific domain. Often their definition is done not by data publishers
but by ontology maintainers as supporting third parties among the data publishers and data
consumers. And secondly, even when data publishers use the same ontology, different data sources
still might contain equivalent resources, i.e., referring to the same real-world concept, but featuring
different URIs. This creates the need to explicitly interconnect these resources via relations that
indicate that both resources represent the same real-world concept. We address the related
important notion of ontologies in more detail in the following Section 2.6.

2.6 Ontologies
Ontologies aim to add and formalise semantics, i.e., meaning, to provide reviewed information to
allow for analytics and reasoning services over the data of multiple datasets to derive further
knowledge. In the deliverable D4.1. The process to design an Ontology called “Ontology Engineering
Method” is explained and proposed for the INFINITECH project to one of the alternatives enable
data interoperability. In this deliverable D4.2 and particularly in this section a review about the basic
terminology in ontologies is presented, details on how ontologies are used in INIFINITECH is already
explained and presented in the Deliverable D4.1, Therefore here we only focus on providing a short
summary of the related concepts and their implication when ontologies are used for data sharing.

2.6.1 Basic Concepts

The notion of ontology is originally taken from philosophy and it is now a common concept in various
fields including computer science. Nevertheless, the use of the ontologies is quite similar in different
domains the meaning of the term varies among these fields. In this section we give a concise
introduction to the notion of ontology and related concepts. For this, we first give a short overview
of the most relevant concepts in the context of semantics.

2.6.1.1 Vocabulary
A vocabulary is a set of terms (controlled) with informal natural language definitions that specify
meaning. A controlled vocabulary is typically more about the terms rather than the underlying
concepts, i.e., the terms’ definitions do not include any specific structural order. The emphasis on
“controlled” mainly refers to the requirement that there should be governance or agreed-upon
procedures in case the vocabulary needs to be changed (either by adding or removing terms).
Between the terms of a vocabulary there are no relationships defined. Thus, pure vocabularies, as
simple list of words with no relationships, do not allow for reasoning.

2.6.1.2 Taxonomy
A taxonomy is a controlled vocabulary that is organised into a hierarchy. Each term names a
category, kind or class. Compared to vocabularies, taxonomies introduce relationships between
terms. However, taxonomies utilise only one type of relationship: it means “is-a” or “is-a-kind-of”
and corresponds to a subclass relationship. According to its strict definition each term in a taxonomy
has exactly one parent term. Thus, taxonomies typically have a tree-like structure. In general,
however, the term “taxonomy” often refers to hierarchies with multiple parents. (It is also
sometimes loosely used to refer to networks with more than one kind of relationship between
terms). If the strict definition of taxonomy is used, subclass reasoning is supported. This mainly
includes that all information associated to a parent class is also associated with all its ancestor
classes.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 69

2.6.1.3 Ontology
An ontology features terms that name classes. The set of classes is organised into a network with
arbitrarily many kinds of relationships. The set of relationship types typically also includes a subclass
relationship, which as outlined above, forms a taxonomy often representing the backbone of the
ontology. The relationships themselves have properties that are used for inference. For example, a
relationship “same-as” can be defined as symmetric, while relationship “contains” cannot. The
meaning of a type of relationship between two classes in an ontology is always formal and well
defined. That allows for automated reasoning beyond the limited subclass reasoning within
taxonomies. For example, the information that “Finance contains Payments” and “Payments is the
same as the Transaction” allows deriving the knowledge that “Finance contains Transaction”.

In terms of expressiveness, ontologies are the most powerful for to define concepts. Particularly for
adding semantics to the data, vocabularies or taxonomies by themselves are too limited in their
expressiveness and the included support for reasoning. This makes ontologies the concept of choice
for the Web of Data. An ontology is a description (like a formal specification of a program) of the
concepts and relationships relevant in the abstract model of some domain-specific knowledge
agreed by a group of stakeholders. This conceptualisation describes knowledge about the domain
rather than states, thus the ontology changes very rarely. A conceptualisation can be defined as an
intentional semantic structure encoding the implicit knowledge that constrains the structure of part
of a domain.

An ontology is a partial specification of the whole intentional semantic structure of a domain, in
which the possible use of constructs is restricted. It is usually a logical theory that expresses the
conceptualisation explicitly. Ontologies are important tools for enabling knowledge sharing and
reuse. Ontology represents ontological commitments, i.e., agreeing on the usage of a vocabulary in
a way that is consistent (but not necessarily complete) with respect to the theory specified by an
ontology. Every knowledge base (or corresponding agent) is committed to some conceptualisation.
We can describe the ontology of a program by defining a set of representational terms. In such an
ontology, the names of entities in the universe of discourse (i.e., set of objects that can be
represented, e.g., classes, relations, functions) are associated with both descriptions of what the
names mean and formal axioms. Such axioms constrain the interpretation and well-formed use of
the corresponding terms. Digital agents can commit to ontologies and ontologies are designed so
that the knowledge can be shared among agents.

Currently, ontologies are commonly used for data integration, i.e., using a conceptual
representation consisting of ontological terms of data and of their relationships, to eliminate
heterogeneities. So far, ontologies have been applied to several fields, for example, search engines
(e.g., Yahoo! categories), on-line shopping (e.g., Amazon’s product catalogue), life science (e.g.,
UMLS [UMLS-Ontology] and Gene Ontology [GENE-ontology]). Additionally, an online lexicon
database, WordNet [WordNet-Lexicon] is widely used for discovery of semantic relationships
between concepts (e.g., homonyms, synonyms, sub concepts, etc.)

Ontologies are expressed using a formal representation to be machine-processable. There exist
several formal languages for this purpose, each characterised by different levels of expressivity. A
specification is considered formal when at least one relation is defined between terms in a formal
language, so that new conclusions can be inferred. As already mention, the “is-a” relation can be
represented in a formal way to express a hierarchical classification, expressing subsumption. For
instance, A subsumes B meaning that everything that is in A is also in B. More expressive formal
languages are those providing a set of constructs to describe classes, instances, relations and
constraints.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 69

The most formal and expressive ones are those that use full logics. On the other hand, the
expressiveness of a language directly affects the performance of subsequent reasoning over the
data. Simply speaking, the more expressive a language is in describing classes, relations, etc., the
higher the resulting reasoning complexity, and vice versa. During ontology development it is usually
better to choose an expressive language. Afterwards, in case the performance is not acceptable, the
ontology can be reduced to a subset for some levels of automatic processing.

In terms of data management, INFINITECH is about data processing, sharing and discovery, i.e., to
deal with the heterogeneity of finance data from different sources and to support the
interoperability between these sources. INFINTECH will leverage from existing efforts in finance and
insurance areas. This includes, firstly, Linked Data principles and the involved technologies (RDF,
SPARQL, etc.) to provide a common data model, and secondly, the notion of an ontology to add
semantics / meaning to data, particularly for the support of data discovery and reasoning.

Ontologies in a general perspective are conceptual representations consisting of defined
terminology about data and of their relationships. Ontologies are used when different source of
data using different data representations needs to be mapped and/or aligned to eliminate
heterogeneities. An ontology typically refers to (a) a controlled vocabulary, i.e., a set of terms with
informal natural language definitions that specify meaning, (b) a taxonomy, i.e., a basic hierarchical
organisation of the terms of the vocabulary, and (c) additional types of relationships between the
terms to specify the meaning of these relationships.

Ontologies are created for a specific domain to ensure a manageable size of the vocabulary. When
developing a new ontology, it is desirable to reuse existing ontologies as much as possible, this
simplifies the development since one can focus on the domain or application-specific knowledge
only. Future integration between applications is facilitated since common parts of ontologies will be
shared. When multiples Ontologies are created, as result of diversity on application scenarios
requiring various operations between the different ontologies, the alignment of ontologies is
required. This deliverable, therefore, describes the basic mechanisms for modular reuse of multiple
ontologies, and features a comprehensive list of exiting ontologies whose covered domains overlap
with the application scenarios of INFINITECH pilots.

2.6.2 Semantics for the Web of Data

The Semantic Web is an effort supported and started by the World Wide Web Consortium (W3C) to
make all information available on the Web, “understandable” and processable by machines. Thus,
humans would be able to easily find required knowledge rather than just web documents in which
the knowledge is hidden and sparse. Like the Web that is a distributed hypertext system, the
Semantic Web is a distributed knowledge base system. Consequently, agreed concepts using
common vocabularies named ontologies are needed to define meaning and relations of distributed
heterogeneous data items to reduce ambiguity, and thus they can be used to represented
information in a proper machine-understandable manner. The W3C recommends RDF, the Resource
Description Framework, for this purpose. RDF has been extended by other formalisms, but it is still
the core framework. INFINITECH will use the “Full Owl extension”.

2.6.2.1 RDFS.
RDF Schema (RDFS) [W3C-RDFSchema] is a set of primitives to describe lightweight ontologies by
using the RDF model and syntax itself. The described ontologies are the used to type resources and
relations in the target domain. RDFS adds classes, subclasses, and properties to resources,
supporting the description of taxonomies of classes and properties. An RDFS vocabulary defines the

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 69

allowable properties that can be assigned to RDF resources within a given domain. RDFS also allows
you to create classes of resources that share common properties. Using the same triples paradigm
defined by RDF, RDFS triples consist of classes, class properties, and values that define the classes
and relationships between the resources within a particular domain. More specifically – but not
exhaustive – RDFS allows

• to name and declare a vocabulary, i.e., to name resource types and binary relation types
called properties),

• to specify the signature of properties, including the type of the domain (rdfs:domain), i.e.,
type of the subject, and type of the range (rdfs:range), i.e., type of the object),

• to specify the (multiple)-inheritance links between types of classes (rdfs:subClassOf),
• to specify the (multiple)-inheritance links between types of properties (subPropertyOf),

and
• to provide labels (rdfs:label) and comments (rdfs:comment) in natural language to

document and display these primitives.

2.6.2.2 OWL.
The Web Ontology Language (OWL) [W3C-OWL] extends RDF and RDFS with the goal to enhance
the expressiveness and reasoning power. Essentially, it defines more classes that let creators of
ontologies define more of the meaning of their predicates. For example, it allows defining relations
between classes (e.g., disjoints), cardinality (e.g., "exactly one"), equality, richer typing of
properties, characteristics of properties (e.g., symmetry), and enumerated classes. Like RDFS, OWL
utilises the RDF triple paradigm for the definition of the ontologies.

As mentioned above, an increase of expressiveness potentially leads to an increase of complexity
when it comes to reasoning over the described data. Therefore, OWL comes in three different
flavours – OWL Lite, OWL DL, and OWL Full – that entail clear boundaries with respect to their
expressiveness:

1) OWL Lite
OWL Lite supports those users primarily needing a classification hierarchy and simple
constraints. For example, while it supports cardinality constraints, it only permits
cardinality values of 0 or 1. It is simpler to provide tool support for OWL Lite than its more
expressive relatives, and OWL Lite provides a quick migration path for thesauri and other
taxonomies. OWL Lite also has a lower formal complexity than OWL DL.

2) OWL DL
OWL DL supports those users who want the maximum expressiveness while retaining
computational completeness (all conclusions are guaranteed to be computable) and
decidability (all computations will finish in finite time). OWL DL includes all OWL language
constructs, but they can be used only under certain restrictions. For example, while a
class may be a subclass of many classes, a class cannot be an instance of another class.
OWL DL is so named due to its correspondence with description logics, a field of research
that has studied the logics that form the formal foundation of OWL.

3) OWL Full
OWL Full is meant for users who want maximum expressiveness and the syntactic
freedom of RDF. For example, in OWL Full a class can be treated simultaneously as a
collection of individuals and as an individual. OWL Full allows an ontology to augment the
meaning of the pre-defined (RDF or OWL) vocabulary. On the other hand, OWL Full is not

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 69

a description logic. It is, therefore, unlikely that any reasoning software will be able to
support complete reasoning for every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor, both in what can be legally
expressed and in what can be validly concluded. The choice of the language eventually depends on
the needs of an ontology developer. While OWL Lite is typically not expressive enough, the choice
between OWL DL and OWL Full mainly depends on the extent to which users require the meta-
modelling facilities of RDF Schema, and on the extent to which users require fully predictable
reasoning support.

2.6.3 Modularisation of Ontologies
The purpose of authoring ontologies is also reusing of knowledge. Once an ontology is created for a
domain, it should be (at least to some degree) reusable for other applications in the same domain.
To simplify both ontology development and reuse, a modular design is beneficial. The modular
design uses inheritance of ontologies - upper ontologies describe general knowledge, and
application ontologies describe knowledge for a particular application, as illustrated in Figure 10
depicting the modularisation of ontologies depending on the scope and partial ordering defined by
inheritance.

Figure 10. Example Modularisation of ontologies.

With respect to Figure 10, ontologies can be classified according to their scope. The resulting four
classes of ontologies are defined as follows:
• upper / generic / top-level ontology

Upper ontologies describe general knowledge that is independent from any specific domain or
application. Typical examples are ontologies describing the concepts of space and time.

• domain ontology
Domain ontologies cover concepts of broader areas of interest, e.g., the medical domain or
electrical engineering domain, or narrower one, e.g., the financial sector domain.

• task ontology
Task ontologies describe knowledge that refer to a general or more specific task or process.
Such a task can be the assembling of individual parts or the observation of events.

• application ontology
Application ontologies are the most specific ontologies describing the knowledge that is
specific to a given application. To derive from a previous example, an application ontology can
address the observation of measurements in a network of finance operations.

Figure 10 above represents the highest level of modularisation. However, modularisation can be
used at each lower level as well. For example, an upper ontology may consist of modules for real

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 69

numbers, topology, time, and space (these parts of the upper ontology are usually called generic
ontologies). Ontologies at lower levels import ontologies from upper levels and add additional
specific knowledge. Task and domain ontologies may be independent and are merged for
application ontology, or it is possible that for example task ontology imports domain ontology. The
upper ontologies are the most reused ones while application ontologies may be suitable for one
application only. When developing new ontology, it is desirable to reuse existing ontologies as much
as possible. A new ontology should be started when another appropriate ontology does not exist,
and by importing upper-level ontologies. This will simplify the development since one can focus on
the domain or application specific knowledge only. It will also simplify integration between
applications in the future since well-defined parts of ontologies will be shared.

2.6.4 Operations with Ontologies

It is possible that one application uses multiple ontologies, especially when using modular design of
ontologies or when we need to integrate with systems that use other ontologies. In this case, some
operations on ontologies may be needed to work with all of them. There are various operations on
ontologies defined, such as merging, unification, and refinement of ontologies. In the context of this
deliverable, however, we focus on the following two operations particularly relevant for the
definition of the INFINITECH Core ontology.

2.6.4.1 Mapping of ontologies
The mapping from one ontology to another one is the expression of the way to translate statements
from the first ontology to the other one. Often this means the translation between concepts and
relations. In the simplest case it is a mapping from one concept of the first ontology to one concept
of the second ontology. Such a straightforward mapping is not always possible, and some
information can be lost in the mapping. While this is typically acceptable, a mapping may not
introduce any direct inconsistencies.

2.6.4.2 Alignment of ontologies
Alignment is a process of mapping between ontologies in both directions. If such mappings are not
directly possible, an alignment requires the modification of one or both original ontologies to enable
such bidirectional mapping, without losing any information during the mapping. Thus, it is possible
to add new concepts and relations to ontologies that would form suitable equivalents for the
mappings. The specification of alignment is called articulation. Alignment, as well as mapping, may
sometimes be only partial.

2.6.4.3 Ontology inheritance
When an Ontology A inherits from Ontology B, Ontology A inherits all concepts, relations and
restrictions or axioms and there is no inconsistency introduced by additional knowledge contained
in ontology A. This term is important for modular design of ontologies where an upper ontology
describes general knowledge and lower application ontologies add knowledge needed only for each
particular application. Inheritance defines a partial ordering between ontologies.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 69

3 Related Work

3.1 Super Stream Collider (SSC)
The SSC enables the distributed cloud-based high-performance processing of semantically linked
streams and it can be considered as an enabler for semantic analytics. SSC is used as a reference
implementation for analytics over semantically unified/interoperable streams, as well as in the KYC
and customer-centric services pilots. In INFINITECH we extended SSC to create SeSA-ME and evolve
the utility and provisioning of services not only to data streams but also multi-domain data streams
by using semantic application services.

The Super Stream Collider (SSC) platform and tools, provides a web-based interface and tools for
building sophisticated mashups combining semantically annotated Linked Stream and Linked Data
sources into easy-to-use resources for applications. The system includes the construction tools for
continuous query processing using a CQELS editor and provides a visualization tool for novice users
while supporting full access and control for expert users at the same time. Tied in with SSC
development platform is a cloud deployment architecture which enables the user to deploy the
generated mashups into a cloud, thus supporting both the design and deployment of stream-based
web applications in a very simple and intuitive way.

The SSC platform is designed as a classical dataflow/workflow execution environment connecting
processing input/outputs through pipelines for creating data mashups. Conceptually, each operator
has multiple input streams and one output stream as illustrated in Figure 11. The inputs can be in
any format while the output is RDF. Only the final operator of a workflow can return a format other
than RDF, if necessary. Operators can be of three classes: A data acquisition operator is used to
collect or receive data from data sources or gateways and can be pull-based or push-based. In these
operators the data transformation and alignment can be done to produce a normalized RDF output
format. A stream processing operator defines stream processing functionalities in a declarative
language, e.g., CQELS. A streaming operator streams the outputs of the final operator of a workflow
to the consuming applications.

Figure 11. Super Stream Collider Platform Architecture

SSC can flexibly answer to dynamic load-profiles which are common in stream-based applications.
In a concrete workflow, two connected operators can be executed in different execution containers.
For instance, the data acquisition operator for collecting Tweets can stream data via the network to
the stream processing engine. The external computing services such as SPARQL endpoints or web
services are called external execution containers. To support the easy and intuitive definition of data
processing workflows in a “box-and-arrows” fashion, the SSC platform offers a visual programming
environment.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 69

The interactive process of creating a mashup with SSC features context-aware discovery services for
data sources. This process enables the user to incrementally build a workflow in a step-by-step
fashion by dragging & dropping the required building blocks and connecting and parametrizing
them. Also, this supports visually debugging the workflow of the mashup. When the user finishes a
mashup, it can be deployed to the SSC cloud to be re-used as a data source or an operator.

The flows of data from the sources to the final output are defined by wiring the blocks with
configured parameters. As reference example, the live visualisations of operator outputs are shown
in Figure 12. The output of the workflow is a live mashup data stream which can be published,
visualized, and queried. Currently SSC supports several types of live data sources, live streams like
twitter streams in this example and DBPedia data sources, among others, which can be discovered
by the SSC discovery component. This context-aware discovery service uses relevant text, location,
sensor data sources that the user has typed and chosen as inputs to form the queries to such
systems to find useful data items to recommend to the user.

Figure 12. Super Stream Collider Functional Blocks.

Figure 13 shows an example where the result of the mashup data can be shown as raw data, RDF
data or can be visualized in different types of charts, so that users can easily monitor their data
processing workflows. In Figure 13, the output is a merge of multiple input streams. Another typical
example of stream data is Twitter data as shown in Figure 5. In this example, the SSC collects all
tweets mention about the user-specified topic and provides them as an RDF stream. For this the
user only needs to drag an operator into the editor and enter the topic of interest.

Figure 13. Super Stream Collider Mashups Builder

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 69

This section overviews interesting SSC functionalities. Due to space constraints we cannot go into
great detail, but extensive documentation is available at https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.248.5925&rep=rep1&type=pdf. SSC provides a wide range of data acquisition
operators which enable access to huge amount of data sources. The data wrappers allow SSC users
to collect data directly from data sources. The RDF-izing operators extended from Any231 help to
convert dynamic web data sources to RDF-based streams. We also implemented wrappers for
transforming social stream data to RDF streams, as already mentioned for Twitter. For output
streams of SSC mashups we support streaming protocols such as PubSubHubbub2 , XMPP3 and
WebSockets.4 SSC also provides developers with various data manipulation operators. For
RDFbased data mashups and data consolidation, we extended and support the operators of DERI
Pipes [Le-Phuoc 2011] . To filter data streams, we use CQELS engine for constructing window-based
filters with the full expressive power of SPARQL 1.1 (CQELS is an extension of SPARQL 1.1). To reduce
the effort of learning SPARQL and CQELS, SSC also offers visual SPARQL and CQELS editor which
enable the user to build SPARQL/CQELS queries interactively and a step-by-step way. Furthermore,
this interactive workflow editing process is leveraged by the context-based discovery services which
recommend potentially useful data sources and data items in every step of building a mashup in
SSC. These services are powered by LSM’s sensor database, and other online SPARQL endpoints
such as Dbpedia, LinkedGeoData, etc. The user can add more knowledge by pointing SSC to further
SPARQL endpoints.

3.2 Basic Design Principles for Building Mashups
The term Linked Data refers to a set of best practices for publishing and interlinking structured data
on the Web. These best practices were introduced by Tim Berners-Lee in his Web architecture note
Linked Data [Heitmann et al, 2009] and have become known as the Linked Data principles.
These principles are the following:

3.2.1 Use of Uniform Resource Identifiers (URIs) as names.

This principle advocates using URIs references to anything, i.e. extending the scope of the Web from
online resources to encompass any object or concept in the world. Thus, things are not just Web
documents and digital content, but also real-world objects and abstract concepts. These may
include tangible things such as people, places and cars, or those that are more abstract, such as the
relationship type of knowing somebody, the set of all green cars in the world, or the colour green
itself.
To publish data on the Web, the things need to be uniquely identified. As Linked Data builds directly
on the Web architecture [Jacobs 2004], the Web architecture term resource is used to refer to these
things of interest, which are, in turn, identified by HTTP URIs. Linked Data uses only HTTP URIs,
avoiding other URI schemes such as Uniform Resource Names (URN) [IEFT-URN] and Digital Object
Identifier (DOI) [DOI]. The benefits of HTTP URIs are: (a) they provide a simple way to create globally
unique names in a decentralised fashion, and (b) they serve not just as a name but also as a means
of accessing information describing the identified entity.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 69

3.2.2 Use HTTP URIs, so that names can be looked up by using those URIs.

The HTTP protocol is the Web’s universal access mechanism. In the classic Web, HTTP URIs are used
to combine globally unique identification with a simple, well-understood retrieval mechanism. Thus,
this Linked Data principle advocates the use of HTTP URIs to identify objects and abstract concepts,
enabling these URIs to be dereferenced (i.e., looked up) over the HTTP protocol to obtain a
description of the identified object or concept. As a result, any HTTP client can look up the URI using
the HTTP protocol and retrieve a description of the resource that is identified by the URI. This applies
to URIs that are used to identify classic HTML documents, as well as URIs that are used in the Linked
Data context to identify real-world objects and abstract concepts.

In case of URIs identifying real-world objects, it is essential to distinguish these objects themselves
from the Web documents that describe them. It is, therefore, common practice to use different URIs
to identify the real-world object and the document that describes it, in order to be unambiguous.
This practice allows separate statements to be made about an object and about a document that
describes that object. For example, the creation date of a person may be rather different to the
creation date of a document that describes this person. Being able to distinguish the two through
use of different URIs is critical to the coherence of the Web of Data.

3.2.3 Provide useful information, using the RDF standard, for looking up for
URIs.

In order to enable a wide range of different applications to process Web content, it is important to
agree on standardised content formats. The agreement on HTML as a dominant document format
was an important factor that made the Web scale. The third Linked Data principle therefore
advocates use of a single data model for publishing structured data on the Web – the Resource
Description Framework (RDF).

RDF provides a graph-based data model that is extremely simple on the one hand but strictly tailored
towards Web architecture on the other hand. RDF itself is just describing the data model, it does
not address the format in which the data is eventually stored and transferred. To be published on
the Web, RDF data can be serialised in different formats. The two RDF serialisation formats most
commonly used to publish Linked Data on the Web are RDF/XML and RDFa.

3.2.4 Include links to other URIs, so that they can discover more things.

This Linked Data principle advocates the use of hyperlinks to connect not only Web documents, but
also any other type of thing. For example, a hyperlink may be set between a person and a place, or
between a place and a company. Hyperlinks that connect things in a Linked Data context have types,
which describe the relationship between the things. For example, a hyperlink of the type “friend-
of” may be set between two people, or a hyperlink of the type “based-near” may be set between a
person and a place. Hyperlinks in the Linked Data context are called RDF links to distinguish them
from untyped hyperlinks between classic Web documents. The fourth Linked Data principle is to set
RDF links pointing into other data sources on the Web. Such external RDF links are fundamental for
the Web of Data as they are the glue that connects different data repositories into a global,
interconnected data space.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 69

3.3 Semantics for the Finance and Insurance Sector
Semantic Web technologies address the limitation in usage of XML, which means that ad-hoc
mapping of different schemas are needed to integrate data. Here, neither semantic interoperability
is enabled nor is reasoning supported. This weakness is addressed by using machine-
understandable descriptions of resources, which do not require any ad-hoc schema. The de-facto
standard as a representation model is RDF and the meaning of each term can be determined
automatically by checking the corresponding vocabulary definition.

Currently, a wide array of data representation standards for finance and insurance applications have
emerged as a means of enabling data interoperability and data exchange between different
systems/applications. Prominent examples include: (i) The Financial Industry Business Ontology
(FIBO®) [FIBO-MDF] by OMG and the Enterprise Data Management (EDM) Council, which defines
financial industry terms, definitions and synonyms using semantic web principles such as RDF/OWL
and widely adopted OMG modelling standards such as UML; (ii) The Financial Instrument Global
Identifier (FIGI®) [FIGI] which aims at unifying terms and definitions for financial security and related
contextual information used during trade negotiation, execution, settlement, and clearing
processes; (iii) FinRegOnt is a core ontology integrating legal and financial information, which is
based on the integration of concepts from FIBO and the Legal Knowledge Interchange Format (LKIF)
[LKIF].

These standards provide the means for common representation of domain specific datasets, which
provide the means for data interoperability (including in several cases semantic interoperability)
across diverse databases and datasets. However, they are still not widely deployed by financial
organizations, as they are not accompanied by proper tools for high-performance semantic querying
that could be used in analytics applications for the finance and insurance sectors. Existing tools and
inference engines for semantic reasoning (such as the CEL DL (Description Logic) reasoner, the Euler
inference engine, the FaCT++ OWL-DL reasoned, the HermiT18 OWL reasoned and the JESS (Java
Expert System Shell)) cannot be easily deployed in massively parallelized cloud environments as
required for dealing with large scale semantic datasets.

3.4 Mash-up Building Features
Existing BigData/IoT applications in the financial and insurance sectors form in most cases
disaggregated (data) “silos”, which are hardly interoperable with systems and application of other
financial institutions and administrative domains. Likewise, there is very poor interoperability across
the diverse datasets that are typically collected and used in financial/insurance applications
(including FinTech and InsuranceTech applications).

A proposition in INFINITECH is to introduce building blocks in the form of tools for semantic
interoperability and interoperable data exchange capabilities, as means of facilitating the
development and deployment of innovative applications that span multiple systems and
stakeholders in the financial supply chain (e.g., cross-border transactions, SWIFT network payments
analytics, as well as a variety blockchain applications). In addition to the core INFINITECH technology
building blocks for data interoperability, data management and analytics, it is expected that
INFINITECH pilots will take advantage of the data modelling that can be used in other specific-
related analytics services.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 69

4 SeSA-ME Specification and Implementation
INFINITECH devises a semantic interoperability solution based on a combination of concepts from
FIBO, FIGI and LKIF as well as based on the selective enhancement of these ontologies with new
concepts as needed by the project’s pilots use cases. SeSA-ME solution is designed in the form to be
a shared semantics solution, which will take advantage of transformation of data schemas to our
common INFINITECH semantics.

4.1 SeSA-ME Architecture
Leveraging on NUIG’s Super Stream Collider (SSC) solution, the INFINITECH project is providing the
means for the deployment and provisioning of semantic reasoning and analytics capabilities in
massive, distributed computing systems (i.e., large scale cloud data centres such as those hosting
the INFINITECH testbeds) by implementing the Semantics Stream Analytics Middleware-Engine
(SeSA-ME). In this way, INFINITECH’s SeSA-ME aims for offering capabilities for live semantic data
processing and on-demand access to smart semantic analytics services. Figure 14 depicts the SeSA-
ME Architecture where, it is observed the different components and how it interacts with data
sources alike it provides data sharing applications.

Figure 14. Semantic Stream Analytics Middleware-Engine Architecture

The high-performance semantic stream analytics functionalities of the SeSA-ME component are
made available through Open APIs and will be deployed on the project’s sandboxes and testbeds as,
in this section the specification for the different blocks of the SeSA-ME engine are described.

4.1.1 Source Selection

Table 1: Source Selection - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-130-S

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 69

Component Name Source Selection

Description This component is responsible for selecting data sources which could
potentially return results for a given request. Usually there are many data
sources available to get data from but all of them might not be relevant for
the request. Hence sending requests to all of them would incur extra load
on the data sources and the SESAME engine and would cause delay in
response to the request. So, identifying relevant data sources for a request
is important to avoid any delays and unnecessary requests to data sources.
The source selection process is performed based on the availability of pre-
processed information, e.g., meta data, from data sources or availability of
mechanisms to inquire about information from data sources at run-time.
The identification of selecting relevant sources for a request will also
contribute to building requests for each individual data source.

Icon N/A

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

Request in JSON format, list of data sources and meta-data of data sources.

Output (Produced
by the Component)

List of relevant data sources against data requested.

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 69

MARKETPLACE Yes if it will be part of the Marketplace

Microservice Yes if it is a dockerized microservice component

Endpoint/REST
API

To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

4.1.2 Query Planner

Table 2: Query Planner – Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-131-S

Component Name Query Planner

Description The query planner identifies the order in which the queries will be
executed on the relevant data sources. This step is performed after the
source selection step. The inputs from the source selection component is
utilised to plan the queries, their order and the data source on which each
query will be executed.

Icon N/A

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 69

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

List of queries and list of data sources on which the query will be executed.

Output (Produced
by the Component)

Query plan

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

N/A

Detailed
Documentation

N/A

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 69

4.1.3 Query Builder

Table 3: Query Builder - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-134-S

Component Name Query Builder

Description As its name suggests, the query builder will build the actual queries, as
identified in the query planning step, from existing query templates. For
example, customer profile building queries.

Icon N/A

IP Owner & Partner in
Charge

NUIG

INFINITECH
Component Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by the
Component)

Query Plan

Output (Produced by
the Component)

SPARQL query or CQELS or C-SPARQL query

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 69

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

4.1.4 Query Executor

Table 4: Query Executor - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-132-S

Component Name Query Executor

Description The query executor component will be responsible for executing the
queries generated based on the API templates on the desired data source.
For example, executing SPARQL query using Jena ARQ library on a data
source, e.g. triple store.

Icon N/A

IP Owner & Partner
in Charge

NUIG

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 69

INFINITECH
Component Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

SPARQL query and data source on which the query will be executed.

Output (Produced by
the Component)

Result set in JSON format.

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 69

4.1.5 Stream Processor

Table 5: Stream Processor - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-133-S

Component Name Stream Processor

Description This component will be responsible for managing RDF streams of data
coming from streaming data sources. It will execute queries on streaming
data and provide streams of output data to the requesting entity, based on
the frequency and time frame specified in the query. For example,
executing a CQEL or C-SPARQL query using a stream processing engine.

Icon N/A

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

C-SPARQL or CQELS query and data source on which the query will be
executed.

Output (Produced
by the Component)

Data streams in JSON format

Technology or
Platform to be used

Java.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 69

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST
API

To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

4.1.6 Access Policy Framework

Table 6: Access Policy Framework - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-135-S

Component Name Access Policy Framework

Description The access policy framework will be used to perform authorization of users
based on the access policy rules defined. This component works after the
authentication step which is not part of this. This component is composed
of user profiles and access policies. User profiles should be stored and
access policies on the underlying data based on the user profiles must be
defined, initialised and stored.

Icon N/A

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 69

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

SPARQL or CQELS query, data source and user information.

Output (Produced
by the Component)

Boolean flag which will represent whether access is granted or denied.

Technology or
Platform to be used

 N/A

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST
API

To be confirmed

License To be confirmed

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 69

4.2 SeSA-ME APIs
The high-performance semantic analytics functionalities of the project are made available through
Open APIs and will be deployed on the project’s sandboxes and testbeds as described in the
following sections. The APIs provided by SeSA-ME Engine are divided into two categories, namely
Static Data APIs and Streaming Data APIs.

Figure 15. Semantic Stream Analytics Middleware-Engine API Services

4.2.1 Static Data APIs

4.2.1.1 Know Your Customer (KYC) Profiler
Know Your Customer (KYC) is the process where businesses can verify the identity of their customer
to ascertain the legitimacy and credibility. The KYC process is mostly used by financial institutions,
such as banks, insurance companies etc. to verify their customers. This section describes RESTful
APIs provided by SESAME Engine for the KYC use case.

There are two perspectives of KYC, one is KYC Data Consumer, the consumer’s perspective of KYC
services and the other is KYC Data Provider, the data provider’s perspective of KYC services. In the
former, financial institutions consume the KYC services provided to verify the identity of their
customers and in the later data providers provide their data to be used as a source for verifying the
identity of customers.

4.2.1.1.1 KYC Data Providers
This section describes the KYC APIs provided for the data providers, whose data can be used to verify
the identity of customers. To be able to become a data provider for KYC services, the data source
must get registered with SESAME Engine.

4.2.1.1.1.1 Data Source Registration API
The data source registration API is used to register a data source with SeSA-ME engine for the
purpose of providing their data to be used for customer identity verification. The data source must

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 69

supply the required information to this API. This information includes attributes, such as “name”,
“type” and “params” for this data source. The “type” attribute specifies the type of data source,
e.g., SPARQL Endpoint, Data World Endpoint, Graph DB endpoint etc. The “params” attribute
specifies the parameters needed to access the data source, e.g., access URL, username, passwords
etc.

Table 7: Example Data Source Registration Information

Attributes Values

name Bank of Ireland

type SPARQL_ENDPOINT

accessURL http://localhost:8890/sparql

The details needed to use the data source registration API are listed in the table below. This table lists the
example input and output in the form of JSON along with their JSON schemas.

Table 8: Example Register Data Source Functionality and URL notation

Functionality: Register a Data Source

URL: /registerDatasource

Method: POST

Registers a data source whose data can be used by KYC Data Consumers for verifying the identity of their
customer.

Table 9: Example KYC Data Consumer Method using JSON Schema

Input JSON example {
 "name": "DS-1",
 "type": "SPARQL_ENDPOINT",
 "params": {
 "accessURL": "http://localhost:8890/sparql"
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 69

 "params": {
 "type": "object",
 "properties": {
 "accessURL": {
 "type": "string"
 }
 },
 "required": [
 "accessURL"
]
 }
 },
 "required": [
 "name",
 "type",
 "params"
]
}

Output JSON example {
 "message": "Data source is registered successfully."
}

JSON schema {
 "type": "object",
 "properties": {
 "message": {
 "type": "string"
 }
 },
 "required": [
 "message"
]
}

4.2.1.1.2 KYC Data Consumers
This section describes the KYC APIs provided for KYC data consumers, who can use these APIs to verify the
identity of a customer. We have identified two scenarios in the KYC use case, i.e. Identity verification and
Business Verification, described in the next sections. Templates for KYC Consumers

Table 10: Example Template for Identity Verification

Attributes Values

identifier ABC-12345

firstName Martin

middleName Serrano

surname Orozco

dateOfBirth 12-01-1975

gender Male

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 69

addressline1 House No. 111

addressline2 Lower Dangan

addressline3 Newcastle

city Galway

postalCode SE06

Table 11: Example Template for Business Verification

Attributes Values

registrationNumber HDBAKSOWI12839HGD4747

businessName XYZ Inc.

dateOfIncorporation 12-12-2012

addressline1 Building No. 13

addressline2 IDA Business Park

addressline3 Newcastle

city Galway

postalCode SE06

4.2.1.1.2.1 Get Template API (Identity Verification)

Table 12: Example Get Template Functionality and URL notation

Functionality: Get Templates

URL: /getTemplate

Method: POST

Get the template that should be provided for verification of an identity or any other purpose.

Table 13: Example Identity Verification method using JSON Schema

Input JSON example {
 "fieldsFor": "Identity Verification"
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 69

JSON schema {
 "title": "ListFields",
 "type": "object",
 "properties": {
 "fieldsFor": {
 "title": "fieldsFor"
 "type": "string",
 "description": "The purpose for which fields are requested"
 }
 }
}

Output JSON example {
 "dataFields": {
 "person": {
 "type": "object",
 "attributes": {
 "identifier": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "middleName": {
 "type": "string"
 },
 "surname": {
 "type": "string"
 },
 "maidenName": {
 "type": "string"
 },
 "dateOfBirth": {
 "type": "date"
 },
 "gender": {
 "type": "string"
 },
 "physicalAddress": {
 "type": "object",
 "attributes": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 69

JSON schema {
 "title": "DataFields",
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "person": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "identifier": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "firstName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "middleName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "surname": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "maidenName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "dateOfBirth": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 45 of 69

 "gender": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline2": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline3": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "city": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "postalCode": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 69

 }
 }
 }
 }
}

4.2.1.1.2.2 Get Templates API (Business Verification)

Table 14: Example Get List of Fields Functionality and URL notation

Functionality: Get List of Fields

URL: /listFields

Method: POST

Get the list of fields that should be provided for verification of a business or any other purpose.

Table 15: Example Business Verification method using JSON Schema

Input JSON example {
 "fieldsFor": "Business Verification"
}

JSON schema {
 "type": "object",
 "properties": {
 "fieldsFor": {
 "title": "fieldsFor"
 "type": "string",
 "description": "The purpose for which fields are requested"
 }
 }
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 47 of 69

Output JSON example {
 "dataFields": {
 "business": {
 "type": "object",
 "attributes": {
 "registrationNumber": {
 "type": "string"
 },
 "businessName": {
 "type": "string"
 },
 "dateOfIncorporation": {
 "type": "date"
 },
 "physicalAddress": {
 "type": "object",
 "attributes": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "business": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "registrationNumber": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "businessName": {
 "type": "object",

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 48 of 69

 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "dateOfIncorporation": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline2": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline3": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "city": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "postalCode": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 }
 }

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 69

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

4.2.1.1.3 Identity Verification

4.2.1.1.3.1 Verify Identity API

Table 16: Example Verify Customer Identity Functionality and URL notation

Functionality: Verify Customer Identity

URL: /verifyIdentity

Method: POST

Verify the identity of a customer based on the customer information provided to the API.

Table 17: Example Verify Customer Identity method using JSON Schema

Input JSON example {
 "dataFields": {
 "person": {
 "identifier": "ABC 12345",
 "firstName": "Martin",
 "middleName": "Serrano",
 "surname": "Orozco",
 "dateOfBirth": "12-01-1975",
 "gender": "Male",
 "physicalAddress": {
 "addressline1": "House No. 111",
 "addressline2": "Lower Dangan",
 "addressline3": "Newcastle",
 "city": "Galway",
 "postalCode": "SE06"
 }
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 50 of 69

 "person": {
 "type": "object",
 "properties": {
 "identifier": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "middleName": {
 "type": "string"
 },
 "surname": {
 "type": "string"
 },
 "maidenName": {
 "type": "string"
 },
 "dateOfBirth": {
 "type": "string"
 },
 "gender": {
 "type": "string"
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 51 of 69

Output JSON example {
 "verificationId": "XYZ-22222-5555-DDD",
 "verificationDate": "2020-12-01T11:50:23",
 "verification": {
 "verificationStatus": "verified",
 "verificationResults": [
 {
 "verifiedFrom": "BOI",
 "verifiedAttributes": [
 {
 "attribute": "identifier",
 "status": "verified"
 },
 {
 "attribute": "firstName",
 "status": "verified"
 },
 {
 "attribute": "middleName",
 "status": "verified"
 },
 {
 "attribute": "surname",
 "status": "verified"
 },
 {
 "attribute": "dateOfBirth",
 "status": "verified"
 },
 {
 "attribute": "gender",
 "status": "verified"
 },
 {
 "attribute": "addressline1",
 "status": "verified"
 },
 {
 "attribute": "addressline2",
 "status": "verified"
 },
 {
 "attribute": "addressline3",
 "status": "verified"
 },
 {
 "attribute": "city",
 "status": "verified"
 },
 {
 "attribute": "postalCode",
 "status": "verified"
 }
]
 }
],
 "errors": [],
 "rule": {
 "ruleName": "",
 "ruleDescription": ""
 }
 }
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 52 of 69

JSON schema {
 "type": "object",
 "properties": {
 "verificationId": {
 "type": "string"
 },
 "verificationDate": {
 "type": "string"
 },
 "verification": {
 "type": "object",
 "properties": {
 "verificationStatus": {
 "type": "string"
 },
 "verificationResults": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "verifiedFrom": {
 "type": "string"
 },
 "verifiedAttributes": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 53 of 69

 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 54 of 69

 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 }
]
 }
 }
 }
]
 },
 "errors": {
 "type": "array",
 "items": {}
 },
 "rule": {
 "type": "object",
 "properties": {
 "ruleName": {
 "type": "string"
 },
 "ruleDescription": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

4.2.1.1.4 Business Verification

4.2.1.1.4.1 Verify Business API

Table 18: Example Verify Business API Functionality and URL notation

Functionality: Verify Business

URL: /verifyBusiness

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 55 of 69

Method: POST

Verify a business based on the business information provided to the API.

Table 19: Example Verify Business method using JSON Schema

Input JSON example {
 "dataFields": {
 "business": {
 "registrationNumber": "HDBAKSOWI12839HGD4747",
 "businessName": "XYZ Inc.",
 "dateOfIncorporation": "12-12-2012",
 "physicalAddress": {
 "addressline1": "Building No. 13",
 "addressline2": "IDA Business Park",
 "addressline3": "Newcastle",
 "city": "Galway",
 "postalCode": "SE06"
 }
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "business": {
 "type": "object",
 "properties": {
 "registrationNumber": {
 "type": "string"
 },
 "businessName": {
 "type": "string"
 },
 "dateOfIncorporation": {
 "type": "date"
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 56 of 69

 }
 }
 }
 }
}

Output JSON example {
 "verificationId": "ASD-1133-333-456",
 "verificationDate": "2020-12-01T11:50:23",
 "verification": {
 "verificationStatus": "verified",
 "verificationResults": [
 {
 "verifiedFrom": "BOI",
 "verifiedAttributes": [
 {
 "attribute": "registrationNumber",
 "status": "verified"
 },
 {
 "attribute": "businessName",
 "status": "verified"
 },
 {
 "attribute": "dateOfIncorporation",
 "status": "verified"
 },
 {
 "attribute": "addressline1",
 "status": "verified"
 },
 {
 "attribute": "addressline2",
 "status": "verified"
 },
 {
 "attribute": "addressline3",
 "status": "verified"
 },
 {
 "attribute": "city",
 "status": "verified"
 },
 {
 "attribute": "postalCode",
 "status": "verified"
 }
]
 }
],
 "errors": [],
 "rule": {
 "ruleName": "",
 "ruleDescription": ""
 }
 }
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 57 of 69

JSON schema {
 "type": "object",
 "properties": {
 "verificationId": {
 "type": "string"
 },
 "verificationDate": {
 "type": "string"
 },
 "verification": {
 "type": "object",
 "properties": {
 "verificationStatus": {
 "type": "string"
 },
 "verificationResults": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "verifiedFrom": {
 "type": "string"
 },
 "verifiedAttributes": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 58 of 69

 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 }
]
 }
 }
 }
]
 },
 "errors": {
 "type": "array",
 "items": {}
 },
 "rule": {
 "type": "object",
 "properties": {

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 59 of 69

 "ruleName": {
 "type": "string"
 },
 "ruleDescription": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

4.2.2 Streaming Data APIs
The second component provided by SESAME Engine is the stream processor, which is responsible for
processing multiple available linked data streams and providing the results to the consumers of data streams.
This section describes the SESAME APIs for streaming data.

4.2.2.1 Stream Registration
SESAME Engine can process multiple streams available and to consume the available streams of data, the
consumer first needs to register for these streams. The consumer needs to have the stream Ids and also
callback URL for receiving back the stream. The callback URL should be a RESTful API and the streaming data
should be received at this API. The technical details are provided in the next section.

4..1.2.1.1 Register for Streams API
This API is used for registering for linked streams. The example JSON inputs and outputs along with their
JSON schemas are provided below.

Table 20: Example Register for Streams API Functionality and URL notation

Functionality: Register for Streams

URL: /registerForStream

Method: POST

Registers for a stream or a list of streams.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 60 of 69

Table 21: Example Register for Streams method using JSON Schema

JSON Example {

 "callbackURL": "http://localhost/sesame-client/getRDFStream",
 "streams": [
 {
 "streamId": "http://infinitech.eu/rdf/stream-2",
 },
 {
 "streamId": "http://infinitech.eu/rdf/stream-4",
 }
]
}

{
 "type": "object",
 "properties": {
 "callbackURL": {
 "type": "string"
 },
 "streams": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "streamId": {
 "type": "string"
 }
 },
 "required": [
 "streamId"
]
 },
 {
 "type": "object",
 "properties": {
 "streamId": {
 "type": "string"
 }
 },
 "required": [
 "streamId"
]
 }
]
 }
 },
 "required": [
 "callbackURL",
 "streams"
]
}

{
 "message": "You have successfully registered for the requested streams."
}

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 61 of 69

 {
 "type": "object",
 "properties": {
 "message": {
 "type": "string"
 }
 },
 "required": [
 "message"
]
}

4.3 Semantic Annotator-Middleware Pre-processing Layer for FinTechs
- SAMPLE-FIN

4.3.1 Data Transformation Guide

The following steps are for the purpose of guiding people to transform their data from native format to RDF
format. Each step also lists a set of tools which can be used to perform a specific task.

4.3.2 Step 1: Selecting Ontologies

If you want to transform your data to RDF format, the first thing you need to do is to find an ontology which
can be used to model your native data in RDF format.

In case of the INFINITECH project, there are several ontologies available. Below is the list of these ontologies.

4.3.2.1 FIBO
The Financial Industry Business Ontology (FIBO) defines the sets of things that are of interest in financial
business applications and the ways that those things can relate to one another. In this way, FIBO can give
meaning to any data (e.g., spreadsheets, relational databases, XML documents) that describe the business of
finance.

Table 22: FIBO Useful Links

Useful Links

External INFINITECH

Website FIBO FIBO Docs

OWL Files FIBO OWL Files FIBO Files

4.3.2.2 FIGI
FIGI is a Financial Industry Global Instrument Identifiers (FIGI) Ontology.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 62 of 69

Table 23: FIGI Useful Links

Useful Links

External INFINITECH

Website FIGI FIGI Docs

Files

FIGI Files

4.3.2.3 LKIF
The Legal Knowledge Interchange Format (LKIF) is an OWL ontology of legal concepts, allowing legal
knowledge bases to be represented in OWL.

Table 24: LKIF Useful Links

Useful Links

External INFINITECH

Website Project Website LKIF Docs

LKIF Files LKIF Github LKIF FIles

Publications LKIF Core Ontology

4.3.2.4 INFINITECH Core
INFINITECH Core defines alignment between FIBO, FIGI & LKIF in a formal way.

Table 25: INFINITECH Core Useful Links

Useful Links

Website INFINITECH Core

INFINITECH Core Files INFINITECH Core FIles

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 63 of 69

4.3.3 Step 2: Mapping Native Data to Selected Ontologies

When you have selected the ontologies which can be used to model your data, the next step is to specify
mapping from entities and attributes in the native data format to entities and attributes in the selected
ontologies.

There are some standard mapping languages available which can be used to specify these mappings, such as
RML, R2RML etc.

4.3.3.1 RML: RDF Mapping language
RML, a generic mapping language, based on and extending R2RML. The RDF Mapping language (RML) is a
mapping language defined to express customized mapping rules from heterogeneous data structures and
serializations to the RDF data model. RML is defined as a superset of the W3C-standardized mapping language
R2RML, aiming to extend its applicability and broaden its scope, adding support for data in other structured
formats. RML follows exactly the same syntax as R2RML; therefore, RML mappings are themselves RDF
graphs.

Other than relational databases, currently you can define mappings from sources, such as CSV, TSV, XML and
JSON to RDF. Such mappings describe how existing data can be represented using the RDF data model.

Table 26: RDF Mapping Language Useful Links

Useful Links

Website RML

Specifications RML: RDF Mapping Language

4.3.3.2 RML Editor
The RMLEditor offers a Graphical User Interface (GUI) to enable data publishers, who are domain experts,
to model knowledge derived from multiple, heterogeneous data sources. The RMLEditor uses RML as its
underlying mapping language, offering a uniform GUI to its users to edit rules.

Table 27: RML Editor Useful Links

Useful Links

Website RMLEditor

Online Tool: RMLEditor Web Version

4.3.3.3 R2RML: RDB to RDF Mapping Language
R2RML is a W3C standard to express customized mappings from relational databases to RDF datasets. Such
mappings provide the ability to view existing relational data in the RDF data model, expressed in a structure
and target vocabulary of the mapping author's choice. R2RML mappings are themselves RDF graphs and
written down in Turtle syntax.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 64 of 69

Table 28: RDB 2 RDF Mapping Language Useful Link

Useful Links

Website R2RML: RDB to RDF Mapping Language

4.3.4 Step 3: Generating RDF

When you have the mappings in place, then the next step is to generate RDF data from native data based on
the mappings specified in the previous step.

The following tools can be used to transform your data to RDF:

4.3.4.1 RMLMapper
The RMLMapper executes RML rules to generate Linked Data. It is a Java library, which is available via the
command line.

Table 29: RML Mapper Useful Link

Useful Links

Website RML Mapper

4.3.5 Step 4: Making data queryable

When the data is transformed to RDF successfully, the next step is to enable querying on the RDF data in
order to make it easily accessible. In order to do this, you need to select a triple store and upload your data
to it. The following triple stores can be used to make your data queryable.

Table 30: Triple Stores Useful Links

Useful Links

Virtuoso Virtuoso

Jena Fuseki Jena Fuseki

4.3.6 Step 5: Data Transformation Example

This section will explain mapping example data to an ontology and then how the transformed RDF data would
look like.

Below is an example database table, i.e. CUSTOMER_TABLE, which contains records of customers. To
transform this table to RDF format, you need to create mappings from this table to your selected ontology.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 65 of 69

Table 31: Example Customer Table

CUSTOMER_TABLE

CUSTOMER_ID FIRST_NAME LAST_NAME DATE_OF_BIRTH

1 John Smith 14-04-1985

2 James Oliver 02-11-1974

Below is an example of mappings generated for transforming the above database table to RDF format.

4.3.6.1 MAPPINGS
Table 32: Data Mapping Example

Example Mapping

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix fibo: <https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/>.

<#CustomerMap>
 rr:logicalTable [rr:tableName "CUSTOMER_TABLE"];
 rr:subjectMap [
 rr:template "http://data.example.com/customer/{CUSTOMER_ID}";
 rr:class ex:Person;
];

 rr:predicateObjectMap [
 rr:predicate ex:hasFirstName;
 rr:objectMap [rr:column "FIRST_NAME"];
];

 rr:predicateObjectMap [
 rr:predicate ex:hasSurname;
 rr:objectMap [rr:column "LAST_NAME"];
];

 rr:predicateObjectMap [
 rr:predicate ex:hasDateOfBirth;
 rr:objectMap [rr:column "DATE_OF_BIRTH"];
].

The example RDF data generated by transforming the database table, i.e. “CUSTOMER_TABLE” using the
above mappings is shown below.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 66 of 69

4.3.6.2 RDF DATA

Table 33: Example RDF Data

Example RDF Data

@prefix it: <http://data.example.com/customer/> .
@prefix fibo: <https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/>.

it:1 a fibo:Person ;
 fibo:hasFirstName "John" ;
 fibo:hasSurname "Smith" ;
 fibo:hasDateOfBirth "14-04-1985" ;

it:2 a fibo:Person ;
 fibo:hasFirstName "James" ;
 fibo:hasSurname "Oliver" ;
 fibo:hasDateOfBirth "02-11-1974" ;

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 67 of 69

5 Conclusions

The financial and insurance sector have not yet an adopted/accepted unified way of accessing &
querying vast amounts of structured, unstructured, and semi-structured data. It is envisioning that
a semantic approach can increase data interoperability and improve the OLTP (On-Line
Transactional Processing) databases, OLAP (On-line Analytical Processing) databases and data
warehouse which will reflect a potential benefit in the financial sector. The new technologies are
having positive impact in all industries, and the FinTech’s are not an exception, the effort and cost
that is associated to finance and banking services with the development of BigData analytics and AI
systems is compensated with the number of opportunities and economic benefits,

In recent years, the convergence of Internet technologies for communication, computation and
storage networks and services has been a clear trend in the Information and Communications
Technology (ICT) domain, beyond the fact that data fragmentation is an issue, there is also a lack of
data interoperability across diverse datasets that can be reduced by using semantic technologies,
however semantics can be used to alleviate this concurrent issue by using the semantic descriptions
that refer to the same data entities with similar (yet different) semantics as the way to improve
interoperability. Currently there is an increasing production of financial data and likewise an
increase on the demand for such Information and in the other hand there is also a growing
production of data coming from financial sectors, growing exponentially the number of sources of
information, and thus it is necessary tools and systems that allows and facilitate that financial
information can be accessed and integrated in a systematic, standardised, and cost-efficient
manner.

Semantic web technologies are taking more relevance in the financial sector and systems where the
information needs to be shared making the information readily useful for solving many scalability
issues. Consequently, remarkable efforts have been invested to enable data interoperability, so that
pieces of data can be plugged in into the data infrastructures, directly exposing their own data
semantics instead of using the data itself, facilitating exchange services. By introducing semantic
technologies, INFINITECH project provides an overlay that is much easier to process and at the same
time minimise the risk on processing data. This semantic layer approach constitutes also the first
step of the INFINITECH pipeline, i.e., gathering semantically annotated data from provided and/or
available datasets or data streams. In this deliverable, we have described how INFINITECH project
would benefit from semantic technologies like Linked Data and ontologies as the best practices in
the semantic interoperability building process.

Following semantic best practices, we have design and implemented the Semantic Stream Analytics
Middleware-Engine (SeSA-ME) analysed the already existing ontologies that are related to the
finance and insurance sectors and that can be reused for our purposes in the INFINITECH project.
The main ontologies which are going to be used as baselines are FIBO, FIGI and LKIF, because they
focused on both financial sector and financial operations containing the baseline for the metadata
that represent, cross-domain and intra domain, financial transactions, and operations with an
attached effort towards standardisation. The INFINTECH Core ontology is an extension generated in
the project that describes cross-domain vocabularies that are used in multi-domains within the
INFINITECH project domain areas, it is meant to be complemented by other domain specific
vocabularies. For this reason, and according to the initial requirements of the INFINITECH project,
other vocabularies specifically related to security and payments are presented.

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 68 of 69

6 References

[Boots 2017] Botts, M., Percivall, G., Reed, C. and Davidson. J. OGC Sensor Web Enablement:

Overview and High Level Architecture. Technical report, OGC, December 2007.

[Compton et al 2012] Compton, M., Barnaghi, P., Bermudez, L., Castro, R. G., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K. Kelsey, W. D.,
Phuoc, D. L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheath, A.
and Taylor, K. The SSN Ontology of the Semantic Sensor Networks Incubator Group. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web, ISSN 1570-8268,
Elsevier, 2012.

[DOI] Document Object Identifier
 Accessible here: http://www.doi.org/handbook_2000/DOIHandbook-v4-4.1.pdf

[EPCGlobal-RPS 2006] EPCglobal: Reader Protocol Standard, Version 1.1, 3 Ratified Standard, 4
June 21, 2006

[EPCGlobal-ALE 2009] EPCglobal: The Application Level Events (ALE) Specification, Version 1.1.1
Part I: Core Specification, EPCglobal Ratified Standard, 13 March 2009

[EPCGlobal-A 2007] EPCglobal: The EPCglobal Architecture Framework, EPCglobal Final Version 1.2
Approved 10 September 2007

[EPCGlobal-EPC 2007] EPCglobal: EPC Information Services (EPCIS) Version 1.0.1 Specification
Approved September 21, 2007

[EPCGlobal-RMS 2007] EPCglobal: Reader Management Standard 1.0.1, 3 May 31, 2007

[GENE-Ontology] GENE Ontology - bioinformatics initiative
 Accessible here: http://www.geneontology.org

[Heitman 2009] Heitmann, B., Kinsella, S., Hayes, C. and Decker, S. Implementing Semantic Web
Applications: Reference Architecture and Challenges. In International Workshop on Semantic
Web enabled Software Engineering, collocated with the 8th International Semantic Web
Conference (ISWC2009), 2009.

[Henson 2009] Henson, C. A., Pschorr, J. K., Sheth, A. P. and Thirunarayan, K. SemSOS: Semantic
sensor observation service. Collaborative Technologies and Systems, International Symposium
on, 0:44–53, 2009.

[Jacobs 2004] Jacobs, I. and Walsh, N. Architecture of the World Wide Web, Volume One, World
Wide Web Consortium, Recommendation REC-webarch-20041215, 2004.

[Le-Phuoc et al. 2011a] Le-Phuoc, D., Dao-Tran, M. Parreira, J. X. and Hauswirth, M. A Native and
Adaptive Approach for Unified Processing of Linked Streams and Linked Data. Proceedings of
the 10th International Conference on The Semantic Web (ISWC’11), Springer, 2011

[Le-Phuoc et al. 2011b] Le-Phuoc, D., Nguyen Mau, H., Parreira, J. X. and Hauswirth, M.. The Linked
Sensor Middleware – Connecting the Real World and the Semantic Web. Proceedings of the
10th International Conference on The Semantic Web (ISWC’11), Springer, 2011

D4.4 – Semantics Stream Analytics Engine I

H2020 – Project No. 856632 © INFINITECH Consortium Page 69 of 69

[Le-Phuoc et al. 2009] Le-Phuoc, D. and Hauswirth, M. Linked open data in sensor data mashups.
Proceedings of the 2nd International Workshop on Semantic Sensor Networks (SSN09) in
conjunction with ISWC 2009

[LOD-Project] World Wide Web Consortium - Linked Open Data, Accessible here:
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

[Priest 2007] Priest, A. Na, M., Niedzwiadek, H. and Davidson, J. Sensor observation service.
Technical Report OGC 06-009r6, October 2007.

[Ruta 2007] Ruta, M. , Noia, T. Di, Scioscia, F., Di Sciascio E. Semantic-enhanced EPCglobal Radio-
Frequency IDentification. SWAP 2007

[Salehi 2007] Salehi, A., Aberer, K. «GSN, Quick and Simple Sensor Network Deployment»,
European conference on Wireless Sensor Networks (EWSN), Netherlands, 2007

[Scherp 2009] Scherp, A., Franz, T. Saatho, S. Staab. F–a Model of Events Based on the
Foundational Ontology DOLCE+DnS Ultralight. In: International Conference on Knowledge
Capturing (K-CAP), Redondo Beach, CA, USA., 2009.

[Sheth 2008] Sheth, A. Henson, C., Sahoo. S. Semantic Sensor Web. IEEE Internet Computing 12
(4), 2008.

[Tsiatsis 2010] Tsiatsis, V., Gluhak, A., Bauge, T., Montagut, F., Bernat, J., Bauer, M., Villalonga, C.,
 Barnaghi, P.M., Krco, S. The SENSEI Real World Internet Architecture. Future
 Internet Assembly, IOS Press, 2010.

[UMLS] Unified Medical Language System
 Accessible here: http://www.nlm.nih.gov/ research/umls/index.html

[IETF-RFC2141] IETF - Uniform Resource Names
 Accessible here: http://tools.ietf.org/html/rfc2141

[W3C-RDF] World Wide Web Consortium - Resource Description Framework,
 Accessible here: http://www.w3.org/TR/rdf-syntax-grammar/

[W3C-RDFSchema] World Wide Web Consortium - Resource Description Framework Schema
 Accessible here: http:// www.w3.org/ TR/ rdf-schema

[W3C-Turtle] World Wide Web Consortium - Turtle Serialisation Specification
 Accessible here: http://www.w3.org/TeamSubmission/turtle/

[W3C-N-Triples] World Wide Web Consortium - N-Triples format specification
 Accessible here: http://www.w3.org/TR/rdf-testcases/#ntriples

W3C-OWL] World Wide Web Consortium – Ontology Web language
 Accessible here: http:// www.w3.org/ TR/ owl-ref

[W3C RDFa] World Wide Web Consortium - Resource Description Framework in Attributes
 Accessible here: http://www.w3.org/TR/xhtml-rdfa-primer/

[W3C-SPARQL] SPARQL Query Language for RDF Implementation
 Accessible here: http://www.w3.org/TR/rdf-sparql-query/

