
HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s horizon 2020 research and innovation

programme under grant agreement no 856632

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D3.1 – Hybrid Transactional/Analytics
Processing for Finance and Insurance

Applications - I

Lead Beneficiary LXS

Due Date 2020-08-31

Delivered Date 2020-08-28

Revision Number 3.0

Dissemination Level Public (PU)

Type Report (R)

Document Status Release

Review Status Internally Reviewed and Quality Assurance Reviewed

Document Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Ref. Ares(2020)4479816 - 28/08/2020

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 38

Contributing Partners

Partner Acronym Role1 Name Surname2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Boyan Kolev,

Javier López Moratalla,

Patricio Martinez,

Sandra Ebro,

Alejandro Ramiro,

Jacob Roldan

José María Zaragoza,

Jesús Manuel Gallego

UPRC Contributor Ioannis Kranas

UBI Contributor Konstantinos Perakis,

Dimitris Miltiadou

UNP Contributor Bruno Almeida

Tiago Teixeira

FI Internal Reviewer Gisela Sanchez,

Lucile Aniksztejn

IBM Internal Reviewer Fabiana Fournier

INNOV Quality Assurance Dimitris Drakoulis

Revision History

Version Date Partner(s) Description

0.1 2020-08-05 LXS ToC Version

0.2 2020-08-10 LXS, UPRC, UBI Adds introduction section and executive
summary

0.3 2020-08-18 LXS, UNP, ORT Adds section 2

0.4 2020-08-19 LXS, UPRC Adds section 3

0.5 2020-08-20 LXS Adds section 4

0.6 2020-08-20 LXS Adds conclusion

0.7 2020-08-20 LXS Finalizes the document

1.0 2020-08-20 LXS First Version for Internal Review

1.1 2020-08-22 ΙΒΜ Internal review

1.2 2020-08-26 FI Internal review

2.0 2020-08-27 LXS Version for Quality Assurance

3.0 2020-08-28 INNOV Submitted

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 38

Executive Summary
The goal of task T3.1 “Framework for Seamless Data Management and HTAP” is to provide a
seamless way for data management across operational and analytical data stores by supporting the
Hybrid Transactional and Analytical Processing (HTAP). The importance of this task is summarized in
the elimination of the need to build and maintain different types of datastores that support the two
different workloads: operational and analytical. Traditional database management systems can
provide support to either the operational or the analytical workload but are very underperforming
when an hybrid load should be served. Due to this, data are being moved from the operational
datastores that ensure transactional semantics to the analytical database management systems,
which allows for read-only operations; however, they cannot support transactions, and therefore,
write operations. Moving data from one store to the other is being done by a process that is called
ETL (extract, transform, and load), which is cost and time consuming. Another drawback is that this
is a batch process, often taking place during the night where the operational workload is very low,
that ends up with having multiple copies of the dataset across the different datastores (the
operational one, and the data warehouse). Moreover, the analytical queries take into account old
and obsolete data from the last day, and therefore, the results of the analytical processing cannot
rely on live data that have been generated and inserted in real-time.

In order to overcome the above obstacles, we will implement HTAP at the data management layer of
the INFINITECH platform, in order to provide a seamless way to access data coming from both
worlds: operational data with historical data that have been stored in a data warehouse. Having a
single data platform that can handle both workloads is crucial for applications and analytical
processing needed by the finance and insurance sector, as it is getting more important than ever the
need to provide real-time business intelligence that relies on live data, and the key element to
provide this is the support of hybrid data workloads on the same dataset: both operational and
analytical ones.

This deliverable describes the initial steps for the INFINITECH HTAP design and implementation. At
this phase of the project, the transactional behavior of the data management layer supports the
concept of the snapshot isolation paradigm, that is the key to allow both operational and analytical
processing, which are contradictive and the one competes the other while accessing data elements
in the storage layer. Having done this, the HTAP can be feasible from the INFINITECH platform.
Moreover, the basic architectural design of the OLAP engine of the platform has been delivered,
which will allow for the effective execution of analytical queries in order to compete the
performance of traditional data warehouses. The work that has been carried out in the scope of this
task until M11, along with the theoretical background that justifies it are presented in this
document. It is important to highlight that this is the first version of the deliverable, and two more
versions (i.e. INFINITECH deliverables D3.2 and D3.3) will be published correspondingly in the next
reporting periods. They are planned to include the overall implementation, along with detailed
results of the benchmarking process.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 38

Table of Contents
1. Introduction .. 6

1.1. Objective of the Deliverable ... 7

1.2. Insights from other Tasks and Deliverables .. 8

1.3. Structure ... 8

2. Making Hybrid Transactional and Analytical Processing Feasible .. 9

2.1 Isolation Levels and Read Phenomena ... 9

2.2 Two-Phase Locking .. 13

2.3 Snapshot Isolation ... 15

3. Transactional Processing in INFINITECH ... 18

3.1 Centralized Transactional processing ... 18

3.2 Decentralized Transactional processing in INFINITECH .. 20

3.2.1 Decoupling Update Visibility and Atomic Commit ... 20

3.2.2 Parallelization and Distribution .. 22

3.2.3 Proactive Timestamp Management ... 25

3.2.4 Asynchronous messages and batching .. 27

3.2.5 Session Consistency ... 27

4. INFINITECH OLAP Engine ... 29

4.1 OLAP overview and connectivity .. 29

4.2 Query Optimization ... 31

4.3 Parallel OLAP Engine ... 35

5. Conclusions and next steps ... 37

List of Figures
Figure 1: Dirty Reads phenomenon .. 11

Figure 2: Non Repeatable Reads phenomenon .. 12

Figure 3: Phantom reads phenomenon .. 13

Figure 4: Snapshot Isolation in practice .. 16

Figure 5: Centralized Transaction Processing ... 19

Figure 6: Transaction phases .. 22

Figure 7: INFINITECH Data Management Components .. 22

Figure 8: INFINITECH Data Management Deployment Diagram .. 24

Figure 9: Proactive Commit Timestamp Management ... 26

Figure 10: Tree of query operators ... 32

Figure 11: Alternative query plan ... 33

Figure 12: Cost effective query plan ... 34

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 38

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

BI Business Intelligence

CflM Conflict Manager

CgM Configuration Manager

CmS Commit Sequencer

CPU Central Processing Unit

DoA Description of Action

DL Deep Learning

ETL Extract, Transform, Load

HTAP Hybrid Transactional and Analytical Processing

I/O Input / Output

IoT Internet of Things

JDBC Java DataBase Connectivity

JSON Javascript Object Notation

LTM Local Transaction Manager

ML Machine Learning

MVCC Multi Version Concurrency Control

OASIS Organization for the Advancement of Structured Information Standards

OLAP Online Analytical Processing

OLTP Online Transactional Processing

REST Representational state transfer

SnS Snapshot Server

SQL Structured Query Language

TPC Transaction Processing Council

WP Work Package

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 38

1. Introduction
This deliverable summarizes the work that has been done in the scope of task T3.1 “Framework for
Seamless Data Management and HTAP” at the first phase of the project (M11). The goal of this task
is to provide a seamless way to access data that are usually stored in operational database
management systems and data warehouses, by eliminating the need to support and maintain both
types of datastores and having all data kept in a single platform. By doing this, the data will be
stored once, instead of having multiple copies of the data elements being kept across the different
datastores. Moreover, it will be feasible for the analytical processing to scan and take account on
live data, instead of performing the analytics on a snapshot of the dataset, as it has been imported
to the data warehouse from the last periodic execution of the batch ETL (extract, transform, and
load) process that copies data from the operational store to the data warehouse. By doing so, real-
time business intelligence, that is becoming crucial for various cases coming from the insurance and
finance sector and are addressed by the INFITECH platform, can become a reality.

Operational database management systems ensure transactional semantics, which means that they
support ACID properties. They enable atomic execution of a series of operations inside a transaction
(the A in those properties), which means they will be either executed all or none. They ensure data
consistency (the C in the properties), which means that they will leave the database in a consistent
state after a transition from one state to another, which is being done after a data modification
operation. They allow for the isolation of transaction (the I in the ACID) which implies that the result
of the concurrent execution of a number of transactions will be equivalent as if they were executed
isolated, one after the other. Finally, they ensure durability of the dataset (the D in the ACID
properties) which implies that the dataset will be durable and can be recovered in a case of failure,
after the successful commitment of a given transaction. In order to support the isolation property,
traditional database management systems often make use of a two-phase locking mechanism. This
mechanism introduces shared and exclusive locks while accessing a data element. When an
operational transaction is being executed, a data modification operation on a data element (e.g.
update the current balance of a client account) is performed, which introduces an exclusive lock on
that element. Exclusive locks forbid concurrent operations to access that element. Therefore, when
the data analyst wants to check the overall balance of a client to recommend a new product, this
operation is being blocked until the former transaction is committed successfully. As a result,
analytical workloads that need to fully scan a dataset are being blocked by the operational loads that
are crucial for a finance institution to ensure the consistency of the finance transactions of their
clients.

As online finance transactions are being executed daily, it is very crucial to ensure data consistency
and isolation when these transactions are being performed in parallel. To give an example, when the
end-user makes a money transfer, it should be ensured that there is enough balance on her account
to perform this task. Operational database management systems provide this type of insurance,
often by introducing some type of locking mechanism on the data elements that are being updated,
with the cost of down perform in cases of analytical processing. The latter often requires the full
scan of a given dataset, which is blocked by the various locks imposed by the operational processing.
In order to overcome this, the data administrators perform periodically some type of ETLs that
migrate data from the operational datastores to the data warehouses. The latter support read only
operations, and therefore, allow for a full scan of a dataset, without being blocked by concurrent
data modification operations. However, they rely on a snapshot of the dataset of the previous day,
or from the last execution of this periodic batch migration, which can be inadequate in cases that
there is the need to produce results in real-time. This is the case for the online identification of a
fraud behavior. The analysis needs to take place on the live data, as they are inserted into the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 38

system to make the identification useful for performing an immediate action. Another example will
be the risk assessment of a possible recommendation that may need to take into account data from
the current day, and not to rely on a previous snapshot that might give erroneous cost estimation.
An analytical processing from an insurance organization might also need to take into account sensor
IoT data as they are inserted into the system, rather than wait for the data to be injected into a data
warehouse for further processing.

As has been already mentioned, in order to overcome this problem, data is being migrated
periodically to a data warehouse, which supports analytical processing, as it does not lock data
elements. Data are being migrated to the warehouse usually during the night, where insurance
institutions usually experience very low operational traffic, and therefore, it is feasible to block all
those operations for a certain period of times while moving data from the one store to the
warehouse. This block/downtime would be inacceptable to be executed by day, as it would block the
whole organization. Apart from copying data into multiple destinations, the additional obvious result
of this migration process, often called ETL, is that it has to be executed periodically during night,
thus, the data analyst can rely only on a snapshot of the dataset of the previous day. The drawback
of this approach is that it can only support near real-time business intelligence (BI), which is mostly
accepted in the majority of the use cases. However, the scope of the INFINITECH project is to
provide real-time BI and therefore task T3.1 supports Hybrid Transactional and Analytical Processing
(HTAP) that is crucial for the needs of the modern enterprises from the insurance and finance
sectors.

1.1. Objective of the Deliverable

The objective of this deliverable is to report the work that has been done in the context of the task
T3.1 at this phase of the project (M11). This task lasts until M27, and therefore, two more versions
will be released, extending and modifying, when necessary, the content of this document, following
the agile approach for system development and in order to update the solution and implementation
with the current trends of the environment as the project progresses. The work that has been done
during this phase (M03-M11) was mainly focused on the delivery of the core transactional
component of the data management layer of the INFINITECH platform, which enables the seamless
data access over the HTAP workloads. Instead of using traditional two-phase locking
implementations to ensure the ACID properties, our implementation makes use of the snapshot
isolation paradigm that avoids locking and therefore allows for i) the scalability of the transactions
that can now support hundreds of millions of concurrent operations, and for ii) the concurrent
execution of read-only operations over the same dataset, which are used by the analytical tools. In
addition, an overview of the OLAP (Online Analytical Processing) engine of the data management
layer of the platform is being presented.

According to the project workplan, in the forthcoming period, the HTAP engine of the INFINITECH
platform will be validated against the various use cases that need this capability. An extensive
benchmarking will also take place combining our solution with native operational and analytical
database management systems, using the family of the TPC-* benchmarks3. Those benchmarks have
been defined by a group of dominant database vendors and provide a series of transactions that can
be usually found in the majority of enterprise applications. They define a common way to
benchmark database management systems. The plan is to make use of the TPC-C benchmark that is
ideal for operational workloads, and the TPC-H that has been designed to stress and benchmark
analytical workloads. We will also make use of the mixed TPC-CH which provides a combination of

3 Transaction Processing Council Benchmarks: http://www.tpc.org/tpc_app/

http://www.tpc.org/tpc_app/

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 38

those two: In particular, the TPC-H has been modified in order to match the schema of the TPC-C,
and provides the same sets of operations as the original one. Having those three available, we plan
to execute the TPC-CH over our HTAP implementation and compare the analytical results with the
execution of the TPC-H over an OLAP engine and the TPC-C over an operational datastore. This work
however is planned to be delivered on the forthcoming versions of this deliverable.

1.2. Insights from other Tasks and Deliverables

The work that is reported in this deliverable is based on the overview description of the
corresponding task T3.1, which has been further specified in more details at the WP2 level, which is
the fundamental work package that defines the overall requirements for the whole platform. In
more detail, task T2.3 comes with the specification of the technologies that the overall platform of
INFINITECH provides aiming to specify the technical requirements that need to be covered by the
technical tasks of the WP3-4-5-6 work packages. Task T2.5 additionally provides the definition of the
various datasets that the overall data management layer must support and must be taking into
account by this task that implements the core engine of this layer. Moreover, the Reference
Architecture (RA) of INFINITECH is being defined in T2.7 and the work that is being done in the scope
of this task must be fitted into the whole design. Therefore, as a technical task, T3.1 has clear
dependencies with T2.7. Finally, T3.1 takes input of the whole WP7 where the definition of all use
cases takes place. On the other hand, as T3.1 implements the fundamental core of the overall data
management component, it is related with the majority of the other technical tasks. More precisely,
it gives output to T3.2 which is related to the polyglot extensions that access data on real-time
through this layer. Tasks T3.3 and T3.4 need to correlate streaming data with the data at-rest,
therefore the HTAP capabilities are crucial when having to perform real-time streaming processing
and combine these two different types of data. Moreover, T5.1 collects data and ingests them into
the platform, therefore the scalability of the transactional processing of T3.1 comes in place, while
the remaining tasks T5.2, T5.3 and T5.4 are related to tools for analytical processing that need to
take into account real data, where HTAP capabilities allows for that.

1.3. Structure

This document is structured as follows: Section 1 introduces the document, putting the work
reported in this deliverable under the context of the project, highlighting its relation with other tasks
of the DoA. Section Error! Reference source not found. provides the fundamental theory and
explanation on how we make feasible the Hybrid Transactional and Analytical Processing. Section
Error! Reference source not found. describes how the transactional processing is being
implemented in the scope of the INFINITECH platform, that allows for both the scalability of the data
modification operations while ensuring the transactional semantics, which is crucial when we need
to deal with real-time data, instead of putting them into a queue and periodically batch import them
to the datastore, while section Error! Reference source not found. presents the overall design of the
OLAP engine. Section Error! Reference source not found. concludes the document.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 38

2. Making Hybrid Transactional and Analytical Processing Feasible
A crucial requirement for the majority of the applications and processing coming from the insurance
and finance sector is to ensure transactional processing, meaning that the operational workload
must ensure the ACID (Atomicity, Consistency, Isolation and Durability) properties. The concept of a
database transaction ensures those properties for the lifecycle of the transaction. Transactions are a
very important abstraction in developing applications since they remove the complexity of difficult
concepts from the application layer, down to the database. When dealing with concurrency, users
do not need to take care about the concurrency control needed when developing applications and
software components that need to bracket the access to shared data. In fact, it is the corresponding
implementation of the protocols in the database level that ensures the corresponding isolation
property and takes care about the details of concurrent access. Secondly, software developers do
not have to deal with failures, as atomicity and durability protocols provide automated recovery in
the advent of failures yielding all-or-nothing semantics. As a result, the ACID properties simplify the
task of programmers.

In this chapter, we focus on the isolation property and how different levels of isolation of concurrent
transactions affect the results of a query when being executed in parallel. The different
implementations of the management of concurrent transactions in order to implement the defined
isolation level, affects the ability of the data management layer to provide hybrid transactional and
analytical processing. We give an overview of the different isolation levels first, in order for the
viewer to deeply understand the problem, along with the corresponding read phenomena that are
subject to each level. Then, we describe how these are achieved by the two dominant approaches
that are implemented by traditional database management systems: the two-phase locking
approach and the snapshot isolation paradigms.

2.1 Isolation Levels and Read Phenomena

In database theory, the term isolation defines the visibility of data elements to concurrent
transactions and if a user transaction can modify an element that has been previously accessed by a
concurrent one, or has the visibility of a data modification that another concurrent transaction has
performed. To give an example, a user wants to perform a money transfer from one of her account
to another, while on the same time she tries to buy a market product that will imply the invocation
of a finance transaction from one of her accounts to buy this new product. Those two transactions
try to access the same data element (the value of her account that has been written and persistently
stored in a database management system), however it is up to the level of isolation to decide
whether or not both of them can perform the operation.

Typically, lower isolation levels increase the ability of many concurrent transactions to access the
shared data. However, the lower the level of isolation, the more important the read phenomena
that are allowed to happen. In our previous example, a money transfer from one of the user’s
account to the other might leave her primary bank account with no money. While executing the
finance transaction to buy a new product on the same time, if the isolation level is low enough, it
might be possible that this transaction will have the visibility of the old value of the bank account,
and therefore, perform the transaction to buy the product, while in reality, the amount of the
required money has been already moved to the new account. These types of concurrent operations
are most likely found in typical applications of the finance and insurance sectors and they require a
higher level of isolation. As it has been already stated, the higher the level isolation is, the lower the
level of concurrent access. To make things worse, in many cases, it might be impossible for an
analytical operation to be executed when the level of isolation is very high, which is a requirement

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 38

for finance institutions. This explains the need to migrate data periodically to data warehouses that
only allows for read only operations where transactional semantics are not imposed.

Typical isolation levels are the following:

• Read Uncommitted: An on-going transaction can read the modified value of a data element
that has been recently modified by a concurrent transaction that has not yet been
committed. This is the lower level of isolation which provides no insurances that the value
that the first transaction has read will be valid at the end of its lifecycle. It can be used in
cases where the validation of the data is not a priority, rather than the level of concurrency.

• Read Committed: This is the default isolation level supported by the majority of operational
datastores. It ensures a minimum consistency of the data that are being concurrently
accessed and covers the majority of the use cases. It allows for a transaction to read the
value of a data element, when a concurrent transaction that has previously modified its
value is now committed. It usually forces the read operation to be blocked until the
concurrent one is successfully committed. However, it allows for some read phenomena that
are inacceptable for the finance sector.

• Repeatable Reads: In this isolation level, the concurrency control mechanism ensures the
validation of the value that has been once read during the whole lifecycle of the transaction.
It forbids any concurrent transaction to modify the value of data element that has been
previously read by an on-going transaction. This will usually require the lock of that data
element that reduces the level of concurrency and as a result, downgrades the overall
performance.

• Serializable: This is the highest isolation level and ensures that concurrent transactions are
being executed as they were occurred in order, rather than in parallel. In most applications
of the insurance and finance sector, this is the required level of isolation that must be
ensured by the data management level. However, this implies that instead of a concurrent
execution of transactions, they will be executed sequentially.

As it has been noted, each one of the aforementioned isolation levels allows for different read
phenomena. Let’s examine them per level.

Dirty Reads

These phenomena can occur under the read uncommitted isolation level. The following diagram
highlights the phenomenon.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 38

Figure 1: Dirty Reads phenomenon

An on-going transaction T1 reads a data element X while a concurrent transaction T2 writes the
value on the same data element X. T1 now reads again the value of X that has been modified to its
new value 7. However, T2 aborts and T1 has read a dirty value 7 for the data element X. This can
have a crucial effect in a finance organization when T2 moves money from one account to another,
and T1 performs a finance transaction in order to buy a product. It assumes that the bank account of
the user has value 7 which might be enough to perform the finance transaction, but this is not true,
as T2 fails and the user’s account has in fact value 5, which is not adequate enough to buy the
product. As we will see in the next subsection, this can be solved by putting exclusive write locks on
the modified data elements.

Non Repeatable Reads

These phenomena can occur under the read committed isolation level. The following diagram
highlights the phenomenon.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 38

Figure 2: Non Repeatable Reads phenomenon

An on-going transaction T1 reads a data element X while a concurrent transaction T2 writes the
value on the same data element X. T1 now tries to read again the value of X that has been modified
to its new value 7. However, under this isolation level, it has to wait until T2 firstly successfully
commits. Then it is ensured that the value that T2 will read is valid, and therefore the check whether
the user has enough money on her bank account to perform the finance transaction. Even if this
improves the phenomenon that was noticed with the read uncommitted isolation level, it still has a
severe implication when it comes to operations related to the finance and insurance sector. T1
initially read the value of the data element that was 5, and when it tried to read it again, it has been
changed to 7. As a result, it does not allow for repeatable reads in the same transaction. Taken into
account that the operations inside a transaction must be atomic, which means they either need to
be executed all or none, they also need to have the same visibility on the same data items. This
might have severe implications when, for instance, the finance institution starts a transaction that
firstly reads the value of the account of the user to decide whether or not she is allowed to perform
the finance operation. It might need to do this at the beginning in order to avoid cost-demanding
write operations afterwards. However, in the meantime, T2 has modified the value of its account,
and when it actually performs the operation, it reads a different value that is not consistent in the
scope of T1. As we will see in the next subsection, this can be solved by putting exclusive write locks
on the modified data elements, along with shared read locks on the elements that have been
accessed by a read operation.

Phantom Reads

These phenomena can occur under the repeatable read isolation level. The following diagram
highlights the phenomenon.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 38

Figure 3: Phantom reads phenomenon

These phenomena occur when we have transactions that require scan operations on a dataset. In
our example, an on-going transaction performs a scan operation to return the data elements whose
field age is between the values 10 and 30. A concurrent transaction however inserts a new data
element whose age value is 27 and commits. When T1 will execute the same query, it will return a
different result set, as a phantom record has been added in the meantime. This might be important
in finance operations that calculate for instance the overall spend of a client, by calculating the cost
value of all her transactions during the last week. That might be meaningful for a fraud detection
mechanism. However, if in the meantime, the user performs a massive money transfer, the result of
two sequentially executions of the statement inside the lifecycle of T1 will be invalid. As we will see
in the next subsection, this can be solved by putting range locks that will forbid a concurrent
transaction to insert a new value inside this range. However, this can be very ineffective and might
typically require the construction of a new index on a specific field and possibly, the lock of the
entire table during the execution of the scan operation, that will have a side effect to entire block of
all write operations that need to access this dataset. In order to overcome this, the data
administrator migrates data on a data warehouse and performs these types of read operations
there, with the drawbacks that have been mentioned in the previous sections.

2.2 Two-Phase Locking

Traditional operational database management systems make an extensive use of the two-phase
locking mechanism in order to ensure the different isolation levels. It is a concurrency control
mechanism that makes use of different types of locks on data elements, thus blocking an on-going
transaction from accessing a shared data element that a concurrent one has previously accessed.
The details of the implementation of this mechanism are out of the scope of this document, but it is
important to mention that it involves two phases: the first one where the locks are acquired while
accessing the data, and the second one where the locks are released while the transaction is
committed. There are several variations on the protocol, but all share the same concept: the
introduction of locks on data elements that can be of two types:

• Shared or read locks: this is added when a transaction is trying to access a data element to
perform a read operation.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 38

• Exclusive or write locks: this is added when a transaction is trying to access a data element
to perform a data modification operation.

An exclusive lock prevents all other operations to access the specific data element until the lock is
released. This means that when modifying a data element, no other read or write operation can be
performed. This prevents from write-write and write-conflicts to happen. On the other side, a shared
lock only forbids a write operation to access a data element, thus preventing a read-write conflict.
However, other read operations are permitted to access the data element and in fact, read-read
operations are allowed as there cannot be conflicts.

In the scope of the different levels of isolation, these locks can help achieve the desired level. Dirty
reads phenomena can be avoided by introducing an exclusive lock on the data element that has
been modified. By doing so, a concurrent read operation T2 is not allowed to access the previously
modified data, as the exclusive lock blocks its access. It has to wait to either the on-going transaction
commits or aborts, which will have the consequence of releasing the corresponding lock. At that
time, the concurrent transaction T2 will be allowed to access the data element, and according to
Figure 1 it will read either the value 7, if T1 has committed, or the value 5, if T1 has been aborted. In
any case, the exclusive lock prevents the dirty reads phenomena and allows for a concurrent
transaction to always read a valid value.

In cases of non-repeatable reads phenomena, they can be prevented by the use of shared locks.
According to Figure 2, the on-going transaction T1 accesses a data element X and locks it with a
shared lock. This will prevent the T2 to modify its value and as a result, T1 will later read the same
value 5 as previously. When T2 commits, it releases its locks and T2 can now modify the value of the
data element X. It is important to notice that in the case of a concurrent transaction T3 that wants to
read data element X, this will be feasible and will read the value 5, as T2 is still blocked by the lock
added by T1, and shared locks does not block read operations.

In cases of phantom reads phenomena, a similar mechanism is also applied. However, according to
Figure 3, a list of shared locks is being applied in the range that affects the read operation. It is true
that if a shared lock is being applied in each of the accessed values, this will still permit a concurrent
T2 transaction to insert a new data element, as this element will not have been previously locked by
T1. In that case, T1 will receive a different result set with a phantom element added by T2. In order
to prevent this, a scan operation adds shared locks in a range of values, preventing all concurrent
operations to modify and insert elements in this range. According to the type of field that needs to
be scanned and the implementation of the corresponding database management system (e.g.
locking on the data element level, locking on the leaf of the corresponding index, locking on the data
table level, etc.) this can block the entire operational workloads that needs to access of a specific
table.

Even if the corresponding isolation level can be achieved by the use of shared and exclusive locks
introduced by the two-phase locking concurrency control, it also introduces two significant inherit
obstacles: the maintenance of the locks requires a central component that orchestrates the whole
process and coordinates the distribution of locks across different data shards in a distributed
deployment. As this component is central, it cannot scale adequately and becomes a bottleneck
when there is the need to scale out the database to multiple nodes. In fact, most of the traditional
database management systems can scale out to a certain degree as the improvement of the
performance of the overall system reaches its peak and starts to be downgraded. Moreover, the use
of range locks for scan operations that are required by the analytical processing further blocks all

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 38

write operations on this datasets, making the whole application to down perform or to completely
block in case a data analyst tries to make an analysis on the live data. As it has been noted, shared
and exclusive locks are contradictory and in fact, analytical workloads adding shared locks compete
with the operational workloads adding exclusive locks. This prevents HTAP to happen and therefore,
the data administrators make use of expensive ETLs to move the operational data periodically to a
data warehouse that allows read only operations without locking.

As the INFINITECH data management component needs to provide HTAP capabilities, it will rely on a
novel and recently used paradigm that follows a different approach, which is called snapshot
isolation and allows for the concurrent existence of both loads, as it removes the need for locking
and therefore, it never blocks transactions.

2.3 Snapshot Isolation

Snapshot isolation4 exists since a long time ago; however it became popular during the last decade
where the need for scalability was raised up due to the wider adoption of cloud applications. This,
combined with the need to continue to ensure transactional semantics made the traditional two
phase locking mechanism inappropriate for distributed database management systems. Snapshot
Isolation provides a very high isolation level due to the fact that transactions read from a snapshot of
the database with the state, as it was when the transaction was started. To this end, this paradigm
requires the use of multi-version concurrency control. By using this mechanism, instead of storing a
single version of each data item, a new version is created when a transaction that updated the item
commits. Therefore, for a single data item multiple versions of it can exist at a given time. These
versions need to be labelled in a way that they enable to choose the right version for a given
transaction that tries to read a data item. Typically, logical timestamps are used for this labelling.

In order to implement the snapshot isolation, a unique component is responsible to distribute these
logical timestamps. Transactions are assigned with those timestamps both when they start and
when they commit. In order to understand how this protocol works, let’s look at Figure 4.

4 EuroSys '12: Proceedings of the 7th ACM european conference on Computer Systems, April 2012 Pages 155–

168, https://doi.org/10.1145/2168836.2168853

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 38

Figure 4: Snapshot Isolation in practice

Let’s assume that we have a central component responsible for distributing the logical timestamps.
This component gives the current value of the timestamp when a transaction starts and increases
this value when a transaction commits. Let’s assume that there is a data element X at snapshot 0
with value 5. Transaction T1 starts at the timestamp 0 and gets assigned with that value. Then it
performs a write operation on the data element and modifies its value to 1. Assuming there are not
write-write conflicts, it commits. At commit time, the timestamp distributor increases the value to 1,
and assigns this value to T1. T1 marks the data element with this timestamp and stores its value.
Now data element X has the old version at timestamp 0 with value 5 and a new version at
timestamp 1 whose value is 1.

T2 now starts. It is assigned with the current value of the timestamp which has been now forwarded
to 1. It tries to read data element X. It will read the most recent version/snapshot of this data
element according to its start timestamp. Data element X has two versions: 0 and 1. The most recent
to timestamp 1 is the version 1, and therefore, it reads the corresponding value which is 1. It then
modifies its value to 2 and it tries to commit. As there is no write-write conflict at that time, the
distributor forwards the timestamp to 2, and assigns that value at commit time to T2, which in turns,
creates a new version/snapshot of that value, whose value at timestamp 2 will be 2. Therefore, now
data element has three versions: version0 with value 5, version1 with value1 and version2 with value
2.

However, a concurrent transaction T3 has been already started before T2 commits. It will be
assigned with that start timestamp of the current value, which at that point, was 1. Even if it is
concurrent with T2, it will try to read data element X after T2 commits. As it has been assigned the
timestamp 1, it will check for the latest version of the data element X before the timestamp it has.
Data element X has now 3 versions, and the latest one to timestamp 1 is the one whose timestamp 1
one. Therefore, it will read the value 1 that corresponds to version 1 and not the value 2 which
corresponds to version 2, which has been created after T3 started. As a result, there is no need to
check for read-write or write-read conflicts. Later on, it will try to modify the value of that data
element. Here, a write-write conflict will be identified, as the latest version of data element X now is
2, which later than the start timestamp of T3 which is 1. T3 will have to abort.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 38

It is important to mention that even if snapshot isolation avoids all read-write conflicts including the
aforementioned one between predicate reads and writes, it still forbids write-write conflicts. This
requires for checking those conflicts with some conflict management system.

We can see from Figure 4 that the snapshot isolation paradigm makes no use of locking and
therefore permits read operations to scan a dataset on the same time with operational load taking
place concurrently on the same dataset. Dirty and Non-Repeatable reads phenomena cannot happen
as there is no need for read-write or write-read conflicts; the protocol itself ensures that each
transaction will read the corresponding version of the data element. Phantom reads phenomena are
also removed, as a repeatable scan operation will never see a phantom element added by a
concurrent transaction, as the latter will always have a timestamp (and therefore a version) bigger
than the on-going scan operation. It comes with the drawback of handling multiple versions of data
items, however a garbage collector can be used that removes old and not accessible versions. The
INFINITECH data management layer makes use of this paradigm in order to allow the Hybrid
Transactional and Analytical Processing (HTAP) to be feasible.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 38

3. Transactional Processing in INFINITECH
The INFINITECH data management layer is relied on the snapshot isolation paradigm in order to
efficiently handle transactional processing. This gives us two benefits: firstly, by design, it allows for
Hybrid Transactional and Operational Processing (HTAP) and secondly, it removes the inherit
bottleneck that is introduced by traditional two-phase locking mechanisms due to the maintenance
of the locks across the distributed nodes. However, traditional implementations of the snapshot
isolation tend not to scale out effectively, and thus, cannot support operational (OLTP) workloads in
very high rates. With our design, the data management layer is capable to scale out to hundreds of
data nodes that allows it to server operational workload in very high rate. The following subsections
provide more details regarding the implementation of our approach.

3.1 Centralized Transactional processing

A transaction can be seen as a sequence of read and write operations on data elements. It must
ensure ACID properties, which means the transactional database management systems must
provide atomicity, consistency, durability, and isolation. As a result, when a transaction commits, all
the data modifications are guaranteed to be durable. If this is not possible due to a commit failure or
a write-write conflict in one of the involved operations, the transaction must abort and none of its
updates should become visible to other transactions. As it was mentioned in the previous section,
the concurrency control mechanism that orchestrates the execution of concurrent transactions
relies on the snapshot isolation.

In order to implement the snapshot isolation paradigm, we need to implement the corresponding
Multi-Version Concurrency Control (MVCC). In our implementation each write operation wi(x¡) of
transaction Ti on record x creates a new private version x, and each read operation ri(xj) of
transaction Ti reads the latest version of x, xj created by a committed transaction Tj such that j<i
and there is no other committed transaction Tz, such that j< z<i. Snapshot read requires that a
transaction Ti reads a snapshot of the database that reflects the latest committed versions of all
records as of start time of Ti. In particular, this means that if Ti performs a read ri on x, then it reads
either the private version Ti previously created (read your own writes) or it reads the version xj
created by Tj such that Tj was the last transaction to write x and commit before Ti started. Snapshot
write requires that no two concurrent transactions (i.e., neither committed before the other started)
update the same entity. If this happens, one of the two transactions will abort (typical strategies are
either the first-committer-wins, or the first-updater-wins). As it was highlighted in the previous
subsection, in case a transaction commits, then the current commit timestamp is increased and the
private versions that correspond to the data modifications that the transaction has done are marked
with this timestamp and then are sent to the datastore to be persistently stored. If the transaction
fails and aborts for whatever reason, this private write-set is released.

Figure 5 illustrates the interaction inside the data management layer of INFINITECH of its various
components. There are depicted three major ones: the data storage layer, the query processing
layer that requests data from the data storage, and the transactional management layer, that
ensures the ACID properties and provides the transactional semantics needed by the operational
workloads. In this simplified version of the implementation which is compatible with the logical
processing of the data management platform itself, let’s assume that the query processing layer
reads data from the data storage, performs the updates locally and creates the private write-set, and
only writes data back to the data storage upon commit. Variations of this protocol can be also found,
where the private write-set can be written in the data store layer but it is visible only to the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 38

corresponding transaction that has written it, unless the commit takes place where the visibility is
guaranteed to all transactions.

Figure 5: Centralized Transaction Processing

Let’s assume that the current commit timestamp maintained by the transactional manager is TS=1.

When a transaction Ti begins, it asks for this value. In case Ti wants to perform a write operation, it
has to ask the transaction manager to check if there are write-write conflicts with the corresponding
data element. A conflict can occur if there is a concurrent transaction Tj, i.e., Tj has not committed
yet or its commit timestamp is larger than Ti’s start timestamp (C(Tj) > S(Ti)), and Tj has written x. If
there is no conflict, a private version of x is being maintained by the on-going transaction and will be
visible only to this, until commit time. If there is a conflict, according to the first-updater-wins
approach, the on-going transaction must abort and release the private write-set. When a transaction
Ti requests to read a record x, the data store has to provide the record created by transaction Tj with
commit timestamp C(Tj), such that C(Tj) ≤ S(Ti), and there is no version of x created by a transaction
Tk such that C(Tj) < C(Tk) < S(Ti). This provides the snapshot read property.

Upon commit time, the transaction asks for the commit timestamp and the transactional manager
has to increase the value of the current timestamp. In our example, this is being increased to 2.
Moreover, the updates need to become durable, before making the private write-set visible to other
transactions. The transaction will send the log of the updates to the transactional manager, and
latter persists this redo-log to a persistent storage. Only then the transaction makes its private write-
set public by persistently store it to the data storage so that it can be accessible by other
transactions. It is important to notice that the commit phase must be atomic, therefore the
increment of the commit timestamp and the write of the private write-set to the datastore are

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 38

tightly related; when updating the timestamp, new transactions must be able to have a visibility to
the modified records. This introduces a first bottleneck while having this approach as new
transactions need to wait until the private write-set is persistently stored to the data store
component. As this is time consuming, the concurrent execution of transactions will be downgraded
to sequential, as each transaction will have to wait for others to commit first.

Another drawback is that the transactional manager is a monolithic node performing different tasks,
which might become a bottleneck in cases there is a huge number of transactions that need to be
served. The transactional manager is a centralized component and cannot scale out with the current
approach. Having this central component perform all these different tasks might require a lot of
resources and as a result, will saturate the resources of the node where it is deployed. We need to
distribute the different tasks of this component in order to be in position to scale them out
independently and leave only the trivial ones that cannot be decentralized in a common node, but
they will require minimum resources

3.2 Decentralized Transactional processing in INFINITECH

As it was clearly noted in the previous subsection, having a centralized component to handle the
transactions gives us no benefits from the traditional database management systems that make use
of the two-phase locking protocol. Both systems share the same bottleneck; scaling out the
transactions. Even if the snapshot isolation gives us the ability to perform both OLAP operations on
top of OLTP workloads sharing the same dataset, if the system cannot scale adequately, it will be
become eventually evident the need to scale out and the proposed implementation will provide no
benefits. In order to overcome this, INFINITECH provides a decentralized transactional processing
mechanism that allows for:

• Scaling out to adapt to increased and diverse workloads

• Being transparent to the application developer and data analyst

• Provide adequate throughput scalability by allowing scaling out linearly

• Minimizes the latency imposed by the commit of a transaction in order to support OLTP
workloads and

• Supporting the independent scaling of the other components of the data management layer: the
data nodes and the query engine instances.

The following subsections give more details on how the INFINITECH data management layer
supports this, making it feasible to provide HTAP capabilities.

3.2.1 Decoupling Update Visibility and Atomic Commit

As stated before, an important limitation imposed by the traditional approach is the atomic commit
phase, meaning that the commit timestamp has to be increased only when the private write-set is
persistently stored in the data node, which is a costly operation and downgrades the level of
concurrency. In the INFINITECH data management platform, we adopt a radically different approach,
by holding two different types of timestamps: the commit timestamp and the snapshot timestamp.
The former is used as usual: assigns the value to transactions that commit. The later gives the value
to the transaction, when it starts, called starting timestamp.

As a result, the sequence of operations when a transaction Ti tries to commit is now the following: Ti
receives the commit timestamp that is incremented, then it writes its private write-set to a redo log
that is flushed to the persistent storage, in order to make the transaction durable, then it writes the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 38

new versions of the data to the data nodes, in order for them to become readable from forthcoming
transactions, and then it informs the transactional manager to update the starting timestamp. The
important thing to notice in this sequence of actions is that only the first must be atomic, which is
trivial, as it only involves the increment of a counter. After this action, the logging can be postponed
to be executed later, and it will only affect the current Ti transaction’s latency. By postponing the
logging phase, it allows us to combine the logging of other transactions into one step, thus taking
advantage of high throughput. After the logging phase, the transaction is now durable and in fact,
we can return the control to the user, unblocking the execution of the commit and perform the next
2 steps in a later phase. At that point, whatever happens, the system can recover as the durability
property is ensured after the successful logging. This also means that the time we need to store the
private snapshots of data to the data nodes does not affect the overall latency of the transaction,
and this can allow the system to take advantage of other transactions and send this information all-
in-once to the persistent storage. Only when the private snapshots are stored in the data nodes, the
snapshot or start timestamp can be incremented, given their visibility to forthcoming transactions.
However, this delay does not affect the data consistency and is aligned with the transactional
semantics.

Given that the commit phase is not executed atomically though, there might be the case where two
transactions are concurrent and try to commit. T1 commits first, that is, takes a commit timestamp
that is smaller than the one that T2 receives, however T2 private snapshots are stored earlier than
T1’s ones and therefore, the snapshot server is informed to advance the corresponding timestamp
to the value of T2. However, this means that T1 modifications must be visible by forthcoming
transactions, which is not true as T1 has not stored its private versions of data yet. In order to
overcome this, when the snapshot server receives a notification to increment the corresponding
timestamp, it waits until all open transactions that have a commit timestamp previous of the current
one are informing its successful store of private versions, and then it increments the snapshot
timestamp. Forthcoming transactions will always take the start timestamp of the enables them to
have the visibility of data without losing consistency.

The snapshot counter is not incremented by one each time a transaction completes its commit. It
represents the longest coherent (i.e. gap-free) prefix of committed transactions. That is, if the
snapshot counter is equal to the commit timestamp C (Tj) of transaction Tj this means that data
versions created by Tj and all transactions with commit timestamp smaller than C (Tj) are durable,
and readable from the data store (stored in the data store layer, but not necessarily persisted).

Figure 6 shows the various phases of a transaction. When it starts, it receives the start timestamp
from the snapshot server that provides its visibility over the data elements. That is, the transaction
becomes active. When it is ready to commit, it sends a request to the transaction manager and the
transaction itself becomes completed. When the logging phase is passed, then the transaction can
be considered durable. After that, it sends the private versions to the data node, so that the
transaction can become readable. After the notification to the snapshot server that the transaction
is readable, the latter eventually increments the snapshot timestamp so that the transaction is now
visible.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 38

Figure 6: Transaction phases

In summary, the proposed solution that has been adopted by the INFINITECH data management
layer is to process the commit phase of a transaction as a pipeline of independent tasks. That way,
we can parallelize the commit processing that allows the overall system to scale in very high levels,
instead of processing each commit atomically that would prevent us from parallelize it and would
impose us to process each commit sequentially. The consistency of data is ensured by the snapshot
server that increments the corresponding timestamp only when there is no gap between
transactions that are committing but they haven’t become readable yet.

3.2.2 Parallelization and Distribution

Figure 7 depicts the major architectural components of the INFINITECH data management layer. We
can see that it consists of instances of the query engine, which incorporates a local transactional
manager, the KiVi key-value internal datastore, which implements the MVCC that is a pre-
requirement for the snapshot isolation to be used, and which is the persistent storage engine of the
platform. Those two components can scale out independently and it is recommended that they co-
exist in a node. That means, an instance of a query engine can be responsible for a couple of KiVi
instances and all of them can be deployed in a single node. When it comes to scaling, we can create
an additional identical node and let the storage engine redistribute the data load among its data
nodes.

Figure 7: INFINITECH Data Management Components

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 38

In addition, the data management layer also consists of the transactional manager that is placed
vertically in the figure, meaning that is totally independent of the number of query engine or data
nodes instances the overall deployment has. However, as aforementioned, having the transactional
manager as a monolithic application introduces important bottlenecks as it cannot scale adequately,
and thus, we have split it to independent components, each one of those is responsible for executing
a specific task. The idea of distribution is to assign the relatively independent tasks executed by the
transaction manager to several independent components. As a result, the transaction manager
consists of the following subcomponents (see Figure 8):

• Apache ZooKeeper (ZK): is responsible for coordinating the distributed process of the
transactional manager. It is mainly used to send heartbeats to other components to identify
their state and if there is a potential failure.

• Configuration Manager (CgM): It holds information about the overall configuration of the
system

• Snapshot Server (SnS): It is informed by a transaction when the latter is readable, so that it
can forward the snapshot timestamp accordingly in order to give the corresponding visibility
to forthcoming transactions

• Commit Sequencer (CmS): It is responsible for the only atomic operation that the
transactional manager has, incrementing the commit timestamp. As a result, this component
cannot scale out, but its amount of work that needs to do is tiny and cannot become a
bottleneck.

• Conflict Manager (CflM): It checks for write-write conflicts. More information about this
component will follow.

• Logger (LgCmS & LgLTM): It is responsible for storing the logging persistently to storage so
that a transaction can become durable and recover in case of a failure.

• Local Transaction Manager (LTM): This component is included in each instance of the query
engine. It is responsible for orchestrating each transaction’s state at a local level.

The deployment diagram of the distribution is depicted in Figure 8.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 38

Figure 8: INFINITECH Data Management Deployment Diagram

From Figure 8 we can see that the majority of the components can be scale independently, apart
from the configuration manager, the commit sequencer and the snapshot server. However, those
components require very low volumes of CPU and memory usage and usually there is no need for
them to scale horizontally. The configuration manager only holds information regarding the overall
deployment and it is requested in case there is a need for a component to scale out, and the new
deployed node needs to get information about the overall deployment in order to be able to
connect to the other components. The snapshot server only receives notifications from committing
transactions and does a small check to identify gap-free transactions in order to update the snapshot
timestamp. Finally, the commit sequencer is responsible to increment the value of the commit
timestamp. Due to the simplicity of these components by design, they have been unified in a single
process that is called MasterMind. The MasterMind cannot scale out, however, in cases there is a
need to server very high workload where the whole deployment consists of hundreds of nodes, we
can scale up the instance by increasing the resources of the corresponding node.

On the other hand, the role of the conflict manager is to check for write-write conflicts in order to
decide if an operation is allowed and which transaction should abort. It can be parallelized and scale
out to many instances, thus it can support very high rates of operational workload. Each of those
instances is responsible for a subset of data keys, which we refer as a bucket. Data keys consist of
the concatenation of the unique table identifier plus the data keys themselves and are hashed and
assigned to a bucket using the modulo function: bucket = hash(key) modulo with the number of
overall buckets. The bucket is the unit of distribution for the conflict manager and each conflict
manager is in charge of a number of buckets. Each bucket is handled by a single conflict manager.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 38

The conflict manager keeps at most two values per data item: the commit timestamp of the last
committed version and the start timestamp of an active transaction updating the data item, if any.
This along with the distribution of conflict managers avoids the conflict manager being a bottleneck
when it handles the whole set of keys, that can be huge. When a transaction Ti tries to modify a data
element, it sends a request to the conflict manager to check for potential conflicts. This invocation is
asynchronous, which means that it is not blocked until the conflict manager responds. In case of a
conflict that must force the transaction to abort, this will be communicated in the next invocation of
the conflict manager, or during the commit phase. This is irrelevant, as the transaction must be
atomic, therefore, it does not matter which operation will cause the abortion, as all operations must
be cancelled. A conflict is detected if the conflict manager has previously accepted a request from a
concurrent transaction (either active or committed). Each transaction keeps how many conflict
managers have been involved and upon successful completion of the commit phase, all the involved
conflict managers are informed about its commit timestamp so that each conflict manager updates
the information about the conflicts and can perform the proper checks for future transactions.

Regarding the logging services, these are responsible to ensure the durability of a transaction, which
can be handled independently as well. The redo records of a transaction are pushed to the logging
service and made durable before commit acknowledgement is returned to the user. The logging
component, named logger, is parallelized and distributed by creating as many logger instances as
needed to handle the required throughput. Each logger takes care of a fraction of log records.
Loggers are totally independent, and they do not coordinate among them. Log records are inserted
into the logger’s buffer. The buffer content is flushed at the maximum rate the underlying storage
allows, minimizing the latency of logging.

3.2.3 Proactive Timestamp Management

As depicted in Figure 8, almost all components of the INFINITECH data management layer can scale
out independently to hundreds of nodes in order to serve very high rate of operational workloads.
An exception is the MasterMind process, which consists of the configuration manager, which does
not need to scale out as it only holds information about the overall configuration is it is rarely
invoked, and the snapshot server and commit sequencer. Given the overall transaction processing
depicted in Figure 5, the request for getting the start timestamp is served by the snapshot server,
while the request to commit a transaction is served by the commit sequencer. Internally, when the
local transaction manager notifies that the private write-set is readable, the snapshot server is
informed in order to update (if possible) the start timestamp, thus updating the visibility of the
dataset. As discussed before, those two components are responsible for a tiny amount of work:
increment their corresponding counter. However, even if the amount of work that they are
responsible for requires very low amount of computational resources, serving very high rates of
operational workloads would require their continuous invocation by the millions transactions and it
might introduce a bottleneck due to the capacity of the network, apart from the inherit latency
introduced by the invocation itself. As a result, the management of those two timestamps become
the ultimate bottleneck of the system. We overcome this issue by implementing a proactive
management of the timestamps, both at the snapshot server and the commit sequencer level.

Regarding the commit sequencer, it should be invoked once the transaction requests to commit and
the conflict manager have already ensured that there are no write-write conflicts and the
transaction can safely commit. The commit timestamp serves to tag the data version/snapshot with
this logical number. As a result, if two concurrent transactions can safely commit, meaning there are
no conflicts between them, it is irrelevant which one of the two will get the earliest number first.
After all, the snapshot server will eventually update the visibility so that both of their modifications

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 38

can be visible by forthcoming transactions. In fact, instead of having each transaction to
communicate independently with the commit sequencer, the latter sends a batch of commit
timestamps to the local transaction manager that is part of the query engine instance, and each
transaction gets the commit timestamps immediately from it, thus delegating the task to
synchronize with the commit sequencer to it in a separate thread.

The whole process is depicted in Figure 9. At the beginning, the commit sequencer is sending an
initial batch of available timestamps to the local transactional manager. Transactions that need to
commit in that instance of the query engine, will get values available from that batch. In that case,
T1 will be assigned with commit timestamp 0 and T2 with the commit timestamp 1, without having
to communicate with the commit sequencer itself. After a predefined period of time, the commit
sequencer will send a new batch of available timestamps. During that period, no transaction
requested to commit in that instance. It is important to notice that the query engine drops the
previous batch and will server on-going transactions with values from the current active batch. As a
result, when T3 needs to commit, instead of being assigned with value 2, it will get the first available
value from the current batch, which is 3. Again, after the predefined period of time, the commit
sequencer will send the new batch and the query engine will drop the current one. The reason for
dropping old batches is to get synchronized with how timestamps are advancing globally. In a
distributed environment with various instances of a query engine, the commit sequencer will send
batches to each one of them. If some query engine processes transactions faster, it will receive
larger timestamps while a slow query engine still uses low-value timestamps. This will delay the
advancement of the global snapshot counter. As a result of discarding commit timestamps, the
snapshot server is not only informed about the timestamps of committed transactions but also
about unused commit timestamp ranges so that, it can advance the snapshot counter appropriately,
without having to take into account the gab that is being created by the dropping of the batches.

Figure 9: Proactive Commit Timestamp Management

When the commit sequencer sends the batch to the local instance, it gets informed about the
number of overall transactions that have been committed during the previous period. By doing this,
it can estimate the range of values that it should send to the query engine in order to avoid spending
unused timestamps. In our example, we can see that after the second provision of the batch, it gets
informed that only 2 transactions managed to commit, and it decreased the batch size of the third.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 38

Regarding the snapshot server, it proactively reports the current start timestamp to each instance of
the query engine by periodically send this value. As a result, we avoid the communication with the
snapshot server on a per-transaction basis. Moreover, instead of sending the commit timestamps of
each transaction to the snapshot server, in order for the latter to advance its counter and to forward
the visibility accordingly, we batch those timestamps in groups and send them periodically. These
are sent after the commit is informed back to the application and the flow is unblocked, so it does
not have any impact on the overall latency of the transaction.

3.2.4 Asynchronous messages and batching

As implied by our implementation of the transaction processing, each transaction needs to send
several messages from performing conflict detection, to read or write data and for logging in order
to ensure the durability of the transaction. Those messages are synchronous, meaning that the
process is blocked until a notification or a response is received, and as a result, they become part of
a critical path that affects the overall response time of the transaction. In order to avoid these
introduced latencies, we have adopted an asynchronous approach whenever possible. For example,
instead of waiting to check for a write-write conflict, we send the request in an asynchronous
manner and we unblock the operation, so that the transaction can continue without waiting for a
confirmation by the conflict manager. If a conflict is detected, it will be notified to the transaction on
the forthcoming request for a conflict. If there is no other request, it will be notified when the
transaction requests for a commit. A transaction must be always atomic so it is irrelevant at which
operation it will be notified to abort, as all operations must be cancelled.

Moreover, message exchanging for these operations also has a network cost and can also become
critical in large-scale deployments, so there is the need to reduce the amount of messages as much
as possible. We handle this issue by batching the requests and the responses extensively. In typical
batching approaches latency is traded off for throughput what causes an increase of response times.
We apply batching combined with asynchrony to avoid a negative impact on response time. During
the conflict detection, a naïve implementation would be to send a request for conflict on each
update operation. This will not only introduce a delay due to the round trip of message exchange but
also will cost for CPU needed at the sending and receiving side. Instead, we keep track of all those
requests and local transactional manager periodically sends a batch with all requests to the conflict
manager. From the transaction point of view, it sends a request to its corresponding local manager
for conflict detection and continues executing its next operation. The local manager periodically
sends those batches, which are examined by the conflict manager. The latter sends back the
responses with the results. By applying this technique, we don’t affect the overall response time of
the transactions, while at the same time we reduce adequately the amount of messages that need
to be sent across the network. The increased latency of the batch exchange which contains
numerous requests is being hidden by the concurrent execution. In fact, from a transaction
perspective, it only needs to wait for the last batch to be received by its local manager.

3.2.5 Session Consistency

Our solution returns the commit to the client when durability is guaranteed but before the updates
of the transaction are readable and visible. This approach might violate session consistency. That is,
a client might not read its own writes across different transactions. Let us consider two consecutive
transactions from one client, T1 and T2. T1 updates x and commits. T2 starts before T1’s update is
visible, and thus, receives a start timestamp smaller as T1’s commit timestamp. Therefore, when T2
reads x it will not receive the version created by T1.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 38

Session consistency can be implemented by delaying the start of transactions after the commit of an
update transaction till the snapshot counter reflects the commit timestamp of the committed
update transaction. Only then, the local transaction manager assigns the start timestamp to the
transaction. This delay can amount up to a few tens of milliseconds that it is not an issue for OLTP
response times that are in the range of 1-2 seconds. It should be noted that a client only pays this
delay when it starts a transaction immediately after committing an update transaction. After
committing a read-only transaction (typically around 90% of the transactions in OLTP workloads) no
delay is paid. Also, if a client does something else between the commit of an update transaction and
the start of a new transaction, this delay can be partially or fully masked.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 38

4. INFINITECH OLAP Engine
The main goal of task T3.1 “Framework for Seamless Data Management and HTAP” is to provide the
corresponding framework that will allow for seamless data access on data that might have been
needed to be distributed among different datastores: an operational datastore that can ensure
transactional semantics and a data warehouse that can be used to perform OLAP operations. Data
are being copying to various locations which is cost expensive in terms of storage, while analytical
operations are scanning a previous snapshot of the dataset, as the ETL operations that migrate data
elements from an operational store to a data warehouse are being executed periodically. The
INFINITECH solution provides a common platform that stores data and allows for both operational
and analytical processing, without the need to copy data to different locations. This is achieved by
providing HTAP capabilities, as explained in the previous sections. HTAP is feasible due to the use of
the snapshot isolation, as presented in section 3. The ability to handle OLAP workloads and remove
the need of migrating data to a data warehouse and delegate to the latter this processing, is based
on the OLAP engine of the INFINITECH data management layer explained in this section.

The implementation of the OLAP engine is in progress at this phase of the project (M11) and as a
result, at this version of the document we present the basic concepts that drive the overall design
and implementation. This section will be further updated in the second version of the deliverable
when the OLAP engine is planned to be delivered.

4.1 OLAP overview and connectivity

As depicted in Figure 7, the data management layer consists of three major components: the KiVi
data store, the query engine and the transactional manager. The latter has been extensively
presented in the previous section. Regarding the KiVi data store, it provides the persistent storage of
the system. The data elements are stored in its data nodes, in a tabular format: It allows for key
identification of a tuple, while a tuple can have various types of columns. It supports all standard SQL
types, and additionally, it supports a column to be of a JSON type and enables query processing on
the JSON, similar to MongoDB. Moreover, it can create indexes on specific columns, thus
accelerating the data retrieval. It has been integrated with the local transactional manager that was
presented in the previous section and therefore, it ensures transactional semantics and ACID
properties. Finally, it exposes an internal API for query processing that can be used either directly by
the application developer and data analyst, or by the query engine itself.

The Kivi Data Storage supports various operations for data modification and data retrieval, similar to
standard SQL. It allows for data insertion, modification and deletion, while it supports data retrieval
either by a get or a scan operation. The former can make use of the index and directly returns the
corresponding tuple immediately, with a cost of O(1). A scan operation returns back a pointer to the
first element that has been accessed, and using an iteration, it returns back the overall result set. It
can benefit from the existence of an index to accelerate the process. It is important to notice that it
can also support the ORDER BY operation, however only if the column to be ordered involves an
index. It also provides filtering operations that allows the retrieval of a subset of a data table,
according to the filtering properties. Finally, it also provides support for all aggregation operators
supported by the SQL standard, such as minimum, maximum, count, summary and average. It is
important to notice though that these operations are supported partially as they can be executed in
a single data node. That means that if we have a distributed deployment involving several data
nodes and a data table has been split among those nodes, the aggregate operations can be executed
only per-node. The execution of the minimum operation will return the minimum value of a dataset

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 38

in the specific node. It is up to the application developer and data analyst to retrieve the overall
minimum of a dataset, by comparing the partial minimums that has been retrieved by each one of
the nodes. Finally, it cannot support JOIN operations between tables.

Accessing directly the data nodes is feasible and accelerate the overall performance, as it avoids the
inherit overhead introduced by the footprint of the query engine. However, the API is designed to
for efficient data retrieval and therefore it does not comply with a specific standard, even if it is very
similar to the one that MongoDB is offering. As the latter also does not comply with a specific
standard but instead it customized to match the specific needs of the MongoDB datastore, in a
similar way, the API that the data storage is providing also is designed to match the specific
characteristics of the storage layer itself. As a result, the direct API cannot be integrated with the
popular analytical tools that are dominant in the insurance and finance sectors, such as Apache
Spark5 or Apache Hive6.

In order to overcome this issue, there has been implemented a series of additional components that
can be used instead. Firstly, a python implementation of the driver is provided. Data analysts that
rely on python programming language in order to write scripts and feed their ML/DL algorithms can
benefit from it, as it exposes native python methods that can be used by the analyst. This driver
consists of a wrapper that encapsulates the complexity of the underlying methods and the
connectivity details of the API. Moreover, in order to be compliant with popular analytical
frameworks often used by analysts in the insurance and finance sectors, there has been provided an
implementation of the OData specification7. The latter is an OASIS standard that defines a REST API
in order to access data in data management system. It provides functionalities for data retrieval and
data modification. It also defines a pair of basic web methods that allows the analyst to execute data
aggregation operations. As this specification is an OASIS standard, it can be effectively integrated
with a variety of analytical frameworks that already are compatible with this standard.

Additionally to the KiVi data storage element, there is also an implementation of the query engine,
which is based on the Apache Calcite framework8. The latter has been extended to support DDL
scripts and data modification operations. It provides a standard Java DataBase Connectivity (JDBC)
driver and its dialect has been extended in order to provide all standard SQL operations, such as data
modification operations (e.g., INSERT, UPDATE, DELETE) that were missing by the framework. The
query engine is also integrated with the local transactional manager in order to ensure transactions
and makes use of the direct API of the KiVi Data Storage for data accessing. By using the query
engine via its JDBC driver the application developer and data analyst can benefit as the driver can be
directly integrated with all popular analytical frameworks that can push down the query execution
directly to the datastore. Being compatible with the standard SQL makes it a powerful tool for data
processing, as the engineer and analyst can write complicate statements and delegate the query
engine itself to process the data. Its query optimizer allows to transform the input statement into an
equivalent one that can accelerate the overall response time of the execution.

It is important to mention that the query engine does not implement the OData specification, and it
is not planned to do so, as it will be meaningless. The OData REST API will provide a third element on

5 https://spark.apache.org/

6 https://hive.apache.org/

7 https://www.odata.org

8 https://calcite.apache.org/

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 38

top of the data storage to retrieve data that it is totally unnecessary. It only defines a small subset of
data operations so there is no operation that cannot be used directly via the JDBC. As a result, it
provides no benefit to implement this standard on top of the query engine. In cases an analytical
framework or other micro service requires the use of REST, it can use the implementation that
directly access the KiVi Data Storage. In fact, using a REST API will imply that complicated operations
must be done in the application level and cannot be pushed down. This makes the use of the query
engine meaningless, as its purpose is to provide SQL support and optimize the query execution.

4.2 Query Optimization

The OLAP core is part of the query engine and consists of various components that interact in order
to facilitate and optimize the execution of a statement. The most important of those are the
following:

• Query Planner: It receives a query statement and transforms it equivalent ones, in the sense
that the execution of each one of those plans will return the exact same result set.

• Query Optimizer: It receives a list of equivalent plans, estimates their cost and decides which
of the proposed ones will have the minimum performance value.

• Query Executor: it receives the plan decided by the query optimizer and establishes the data
pipeline needed for the query execution and data retrieval.

When the query planner receives a statement, it uses an internal compiler in order to create a
structural representation of the script. Each part of the script involves a specific query operator and
the compiler creates a structural tree which connects all the operators that need to take place in
order to execute the query. Let’s have a look at the following query:

SELECT t1.name, t2.account_number

FROM Persons as t1 INNER JOIN Accounts as t2 on t1.person_id = t2.person_id

WHERE t1.age > 60

This defines a scan operation on two tables, a join operation over two tables, a filtering operation
with a specific predicate, and a projection over two fields. The tree of the query operations of this
statement will be the one depicted in Figure 10.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 38

Figure 10: Tree of query operators

We can see that this query will execute two scan operator over the Persons and Accounts data
tables, will join the intermediate results, then will filter out those tuples that have the age column
lesser than 60, and will finally remove all other columns apart from the name and account that need
to be projected to the final result set.

When the query planner constructs the tree of query operations, it applies various transformation
rules that are available in order to propose equivalent plans. The rules should result to a plan that is
valid and equivalent. For instance, an alternative plan can be the one depicted in Figure 11.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 38

Figure 11: Alternative query plan

The planner proposes an alternative plan that the filtering operation should be pushed down and
executed before the selection of the tuples of the Person table. Making use of a greedy algorithm, it
produces various transformations that are being sent to the query optimizer to estimate the cost of
each of the plans. The cost is taking into account three metrics: number of I/O access, size of tuple
and number of rows each operator will return. The number of I/O access is important as this is a
heavy operation with an increased latency. The size of the tuples affects the number of bytes that
need to be sent over the network when fetching data from the data storage and the size of memory
the query engine requires in order to execute the statement. Finally, the number of rows is
important in operations such as the various implementations of the join operation or ordering when
this cannot be pushed down to the KiVi data storage level. The optimizer makes use of various
statistics available by the latter in order to have a better estimation of the cost. For instance, it can
know if a column is indexed, the histogram of the distribution of the data over the index etc.

Each type of operator might have various implementations. For instance, the filtering operation
might have an implementation that sends the filtering to be executing in the KiVi data storage level
or in the query engine itself. For instance, Figure 10 implies a filtering implementation on the query
engine, while Figure 11 implies that the filtering will be pushed down to the KiVi data storage. As the
latter provides support for the majority of the SQL operations, many operations can be pushed down
to that level, accelerating even more the overall performance by exploiting data locality and the fact
that lesser tuples are being transmitted over the network and lesser number of tuples need to be
processed in the query engine level.

The join operation is another example of an operation that has various implementations. Currently,
the query engine has been designed to support the nested-loop join, the merge join, the hash join,
the equity join and the bind join. Apart of the nested-loop join operations, all others are currently
either under implementation or under evaluation by the query optimizer, and therefore more

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 38

information regarding the details of the different implementations will be given in the next version
of the deliverable.

Another important feature of the query engine is the ability to create custom operations via the use
of table functions. This can extend the already functionality and enable it to access data from
external sources. For instance, an implementation of a table function might allow executing a query
statement in MongoDB and retrieving the results to the query engine. This implementation of the
table function will be part of the tree of operators that the planner proposes and will be part of the
data pipeline established by the query executor. By doing this, we can enable polyglot capabilities in
the INFINITECH data management platform. These will be explained in the corresponding series of
deliverables of task T3.2 “Polyglot Persistence over BigData, IoT and Open Data Sources”.

In our example, the most efficient query plan will be probably the following:

Figure 12: Cost effective query plan

This will implies that the query executor will make use of a filtering operation in the Kivi Data
Storage level to eliminate the tuples of the Persons table that won’t be part of the JOIN and do not
need to be transferred to the query engine level, it will push down the projections to the Kivi Data
Storage again, so as to reduce the amount of data that need to be transmitted over the network,
and finally, it will make use of a JOIN operation in the query engine level. According to the
information available by the KiVi data storage, it can use different types of implementations of the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 38

JOIN. For instance, if the column person_id of the data table Accounts is indexed, this means that it is
possible to retrieve data in an ordered manner on this field. Assuming that the person_is of the
Persons table is a primary key, and therefore indexed by default, both selections in the KiVi Data
Storage can retrieve data in an ordered fashion. As a result, the merge join implementation might be
the optimal, as it quickly eliminates data that won’t be part of the final result (i.e. tuples concerning
accounts that are related with people younger than 60 years old), but it requires that both operands
of the JOIN must be ordered. At the end, the query executor initializes the instance of all those
operators, establishes a data pipeline and starts asking for data from the top operator. All operators
implement the same interface, so that the details of the execution are transparent regardless of the
type the operator. Each time, the executor invokes the next method of the interface, and its
implementation asks the operator above according to the pipeline to get more data, by also invoking
its next method. Operators also might pre-fetch data in order to accelerate the data movement
across the different nodes of the query plan.

4.3 Parallel OLAP Engine

As mentioned at the beginning of this section, the main objective of Task T3.1 is to provide a data
framework for seamless data accessing when mixing OLTP with OLAP workloads. Typically, for the
former, operational datastores are being used that are capable to ensure transactional semantics,
while for the latter, data are being migrated to data warehouses that provide powerful analytical
capabilities and can process large amounts of data efficiently. The INFINITECH data management
platform intends to covert this need for HTAP processing. We’ve already explained how the system
can handle very efficiently OLTP workloads and how it can be used for data retrieval supporting all
types of analytical operations. The previous subsection described how it can benefit by the query
optimizer of the query engine to accelerate the response time of the query execution as it can
propose an optimal execution plan. However, in order to truly fulfil the requirements of an OLAP
datastore that has been built to efficiently execute analytical queries, the data management engine
must allow for the parallel execution of the query. In INFINITECH, we provide 4 types of parallelism:

• Inter-query parallelism: Each query can be executed in a different node. The end-user
submits a statement via the JDBC driver, and the latter decides which of the available
instances of the query engine has lesser amount of work and consumes lesser resources, so
that it can assign the execution of the query to a specific instance.

• Intra-query parallelism: The query itself can be split and can be executed in parallel in
different nodes in a distributed manner.

• Inter-operator parallelism: Each operator that is part of the query can be executed by a
different node. That way, different nodes can be responsible for the execution of different
operators and thus, distribute the computational resources needed among the instances of
the query engine.

• Intra-operator parallelism: An operator itself can be executed in a distributed manner. This
means that it can be split into different data nodes and the master node can merge the
partial results and return the overall set to the upper layer in the query plan.

The innovation of the INFINITECH data management system with respect to its analytical capabilities
lies in its ability to provide intra-operator parallelism to cost demanding operators, such as the
various aggregations and the join operator. In fact, the ability of the KiVi Data Storage to partially
execute aggregations together with the intra-operator parallelism, give a lot of improvement in the
overall response time of the execution. The whole operator can be pushed down to the KiVi Data
Storage and can be executed in a distributed way. An aggregation operator typically involves a scan
operation that retrieves the tuples that need to be calculated and then applies the aggregation. In a
distributed deployment where a data table has been split to various data nodes, each one of the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 38

nodes will only scan the amount of data that is concerned, and therefore the overall execution can
be benefit from the parallel scan that takes place on each of the data nodes. After the scan, the
aggregation is applied and the results are merged from each of the partial executions. To clarify how
this happens, the overall minimum value is the minimum value of the partial results. The overall
maximum value is again the maximum value of the partial maximums. The overall count and
summary are also the summary of the partial count and summary results. The only difference comes
with the overall average which cannot be the average of the partial average retrieved by each data
nodes. However, the overall average is defined by the overall summary divided by the overall count.
As we saw, those two operations can be executed in a distributed manner and therefore, the overall
average can be also executed distributing the load to different nodes.

In order for the intra-query and intra-operator parallelism to be achieved, it is required that a data
shuffle operator is available. This is important for the join operator that cannot be pushed down to
the KiVi Data Storage, as the latter does not support this operation. The shuffle operationbroadcasts
data retrieved by the distributed operators to all involved nodes. That way, in case we have join
between two tables that will be implemented by a nested-loop join, this will involve the scan of the
data of each of the tables. The OLAP engine can push down the scan down to the KiVi Storage, and
the operation can be executed in a distributed manner, as shown. As we support intra-operator
parallelism, the join will be executed in a distributed manner among the instances of the query
engine. The master node fetches data from the left side of the join, those are being broadcasted to
all nodes that are executing the operator. Each of those then picks up the value from the pipeline of
the shuffle and enforces the logic implemented by the operator to retrieve only the corresponding
value of the right hand of the join. The intermediate results are being collected by the master node
which in turn, returns back the result to the upper layer of the query plan.

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 38

5. Conclusions and next steps
This document reported the work that has been currently done in the scope of task T3.1
“Framework for Seamless Data Management and HTAP” whose main objective is to provide a
seamless way for data management across operational and analytical data stores by supporting the
Hybrid Transactional and Analytical Processing (HTAP). The result of this task consists of the core
INFINITECH data management platform that is a central data repository that can store data and
provides a seamless way for OLTP and OLAP operations, without the need to migrate data from an
operational datastore to an analytical store using expensing ETLs for data migration. This eliminates
the need for keeping multiple copies of data over various types of stores and additionally allows for
analytical processing over live data, and over a previous snapshot of the dataset that was taken at
the time the ETL was executed.

This report provides an analysis over the read phenomena that occur according to the isolation level
and concludes that the organizations in the finance and insurance sectors require a higher level
isolation, which will downgrade the level of parallelism of the concurrent execution of transactions.
We decided that the traditional two-phase locking mechanism that is implemented by traditional
operational data management systems will create a bottleneck when mixing operational with
analytical workloads and we saw the benefits of relying on the snapshot isolation paradigm for
building our transaction engine.

Based on this decision, we designed the INFNIITECH transactional engine in a manner that is fully
scalable in order to handle very high rates of transactions. Insurance and finance institutions are
expecting very high rates of traffic as they have to serve millions of finance transactions per minute
or need to take into account millions of sensor IoT data. Instead of a monolithic approach, the
transactional manager, as presented in section 3, can scale out its components independently in
order to handle those high rates. In the cases that a bottleneck can occur due to the fact that some
components cannot scale out, a proactive approach and an asynchronous communication have been
applied that eliminates the issue. Therefore, the data management layer of INFINITECH is expected
to perform better than the traditional operational datastores, as it solves the issues and bottlenecks
that those stores impose when dealing with the high OLTP workloads that the finance and insurance
organizations produce.

Moreover, its OLAP engine provides all standard SQL capabilities that typical analytical datastores
provides and it is compatible both with the OData standard, exposing a REST API, and implements
the JDBC specification for data connectivity. By doing this, it can be integrated with all popular
analytical frameworks used by the data analysts for ML/DL activities in the finance and insurance
sectors. Its engine supports query optimization by transforming the query in order to take advantage
of the characteristics of its internal storage engine, while it supports the parallel execution of the
query statement, in order to achieve the same performance as typical analytical datastores. This,
combined with the ability to perform OLTP workloads on the same data, eliminates the need for the
migration of the operational data to a data warehouse using expensive ETLs. This enables
organizations in those sectors to perform effectively analysis over the real data, thus providing real-
time business intelligence to their customers.

To conclude, the progress of the task T3.1 is in plan with the timeline, and an initial implementation
has been provided. At this phase of the project, the HTAP capabilities have been supported by the
transactional processing that the INFINITECH data management platform offers. Currently, the OLAP
engine is extended in order to improve its internal query optimizer for taking advantage of the

D3.1 – Framework for Seamless Data Management and HTAP - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 38

unique characteristics of the storage level, while the parallel processing is under implementation
that will improve the overall performance of the analytical queries. In the second and third iterations
of this deliverable, additional details regarding the OLAP engine will be provided, along with some
benchmarks based on the TPC-* family of frameworks. This will validate the INFINITECH solution
over other solutions used in the finance and insurance sectors for supporting transactional and
analytical processing.

