
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D6.5 – Tools and Techniques for Tailored

Sandboxes and Management of Datasets - II

Revision Number 3.0

Task Reference T6.2 - T6.3

Lead Beneficiary HPE

Responsible Alessandro Mamelli

Partners Participating partners in Task according to DOA

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-07-31

Delivered Date 2021-08-03

Internal Reviewers RRD

Quality Assurance CCA

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)4939120 - 03/08/2021

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 92

Contributing Partners
Partner Acronym Role [1] Author(s) [2]

HPE Lead Beneficiary Alessandro Mamelli – Domenico Costantino –
Andrea Toro - Alain Vailati

LXS Beneficiary Pavlos Kranas

INNOV Beneficiary George Fatouros

UPRC Beneficiary Georgios Makridis

RRD Internal Peer Review Marian Hurmuz

CCA QA Review Paul Lefrere

Revision History
Version Date Partner(s) Description

0.1 2021-02-28 HPE ToC Version

0.2 2021-03-15 HPE Updated ToC Version with requested
contributions

0.6 2021-04-30 HPE and contrib.
partners

1st round of contributions

0.7 2021-05-31 HPE and contrib.
partners

2nd round of contributions

0.8 2021-07-09 HPE and contrib.
partners

3rd round of contributions

1.0 2021-07-16 HPE First Version for Internal Peer Review

2.0-2.1 2021-02-08 HPE - RRD - CCA Internal Peer Review and version for Quality
Assurance - Review by the Quality Manager

3.0 2021-03-08 HPE Version for Submission

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 92

Executive Summary
Within INFINITECH Work Package 6 “Tailored Sandboxes and Testbeds for Experimentation and Validation”,
this document describes the results of Tasks T6.2 “Mechanisms and Tools for Tailored Sandboxes Provision
and Configuration” and T6.3 “Integrated Management of Testbeds' Datasets” achieved during the second
phase of the project, and provides the second version (D6.5) of this deliverable (out of the three foreseen in
the whole of the work plan for WP6).

With respect to the general WP6 objectives, the deliverable mainly focuses on two of them, i.e.:

i. To provide tools and techniques for creating tailored sandboxes based on the selection of proper
INFINITECH data assets, technological & regulatory building blocks.

ii. To provide a mechanism for integrated management of testbeds’ datasets, based on a continuous
integration approach.

The achieved results provide key contributions for the fulfilment of the 2nd major WP6 milestone (MS14 –
Second Version of ALL Sandboxes & Testbeds Available – foreseen for M24 of the project) and provides the
second release of the proposed tools and techniques.

This release includes additional and enhanced features with respect to the previous one: within them, it is
worth to mention the Blueprint guidelines for the “INFINITECH way” deployments of project pilots and
technologies and their concrete implementation as two of the official INFINITECH pilots.

The document is the accompanying textual specification of the other major deliverable result: the second
release of the proposed tools and techniques integrated and deployed into the INFINITECH blueprint
reference testbed setup, designed and implemented upon two of the target INFINITECH infrastructures.

The document and the developed INFINITECH blueprint reference testbed setup constitutes the overall
deliverable output.

As consistently done since the beginning of WP6 activities, the work has been carried out in close cooperation
and coordination with the other INFINITECH WP6 tasks and work packages 2-3-4-5 tasks and partners, taking
into account and integrating the delivered results and concepts (e.g. the INFINITECH Reference Architecture
proposed by WP2) in a coherent and uniform manner. Moreover, it has taken into account the preliminary
feedback coming from the 1st round of the INFINITECH work package dedicated to the Large Pilots’
Operations and Stakeholders’ Evaluation of the proposed Financial and Insurance Services (WP7).

By the project’s end, the overall progress of such WP6 tasks will be one of the major drivers of the upcoming
2nd round of the WP7 Pilots’ Operations and Stakeholders’ Evaluation.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 92

Index
1 Introduction ... 9

1.1 Objective of the Deliverable .. 9

1.2 Insights from other Tasks and Deliverables... 10

1.3 Structure .. 10

2 Relation to the general INFINITECH Reference Architecture .. 12

2.1 INFINITECH Reference Architecture .. 12

3 Tools and techniques for Testbeds and Sandboxes .. 15

3.1 Containers benefits ... 15

3.2 Microservices approach .. 16

3.3 Kubernetes containers orchestration .. 17

3.3.1 Kubernetes architecture .. 17

3.4 INFINITECH Testbeds ... 19

3.5 INFINITECH Sandboxes .. 20

4 Tools and techniques for Management of Datasets ... 22

4.1 Data Sources and Data Access ... 22

4.1.1 Static data ingestion .. 23

4.1.2 Dynamic data ingestion ... 23

4.1.3 IoT Streaming ... 23

4.1.4 Direct access to on premise data sources ... 24

4.1.5 Blockchain data access .. 24

4.1.6 Third Party data access .. 24

4.2 Datasets management from the Blueprint reference environment perspective 25

5 Overview of the INFINITECH blueprint reference testbed .. 28

5.1 Development view ... 28

5.2 Deployment view ... 31

5.2.1 Creation of the EKS INFINITECH cluster (Blueprint) .. 32

5.2.2 Namespace, Network and Quote policies ... 39

5.2.3 How to recreate the blueprint testbed for a specific INFINITECH Pilot 41

6 Blueprint guidelines for the “INFINITECH way” deployments of project pilots and technologies.......... 43

6.1 Guidelines overview .. 43

6.2 Building an INFINITECH component .. 47

6.3 Building an image using pre-compiled libraries/binaries .. 53

6.3.1 Building an image using pre-compiled libraries/binaries .. 53

6.3.2 Building an image using a package container.. 55

6.3.3 Building a pilot-specific component .. 59

6.4 Deploy a pilot use case in a Sandbox ... 65

6.4.1 Preparing the deployment using Kubernetes .. 70

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 92

6.4.2 Deploying using Kubernetes .. 76

7 Implementation of the Blueprint guidelines to INFINITECH blueprint pilots .. 80

7.1 Blueprint environment for Pilot #5b: Business Financial Management tools delivering Smart
Business Advice ... 80

7.1.1 Pilot Objectives .. 80

7.1.2 Pilot Workflow ... 80

7.1.3 Blueprint reference testbed implementation ... 82

7.2 Blueprint environment for Pilot #2: Real-time risk assessment in Investment Banking 85

7.2.1 Pilot Objectives .. 85

7.2.2 Pilot Workflow ... 86

7.2.3 Blueprint reference testbed implementation ... 86

8 Conclusions .. 89

9 Appendix A: Literature ... 91

List of Figures

Figure 1 – Task dependencies in WP6 ... 10
Figure 2 – INFINITECH Reference Architecture logical view .. 13
Figure 3 – VM vs Container ... 15
Figure 4 – Container kernel properties ... 16
Figure 5 – Monolithic vs Microservice ... 16
Figure 6 – Kubernetes Architecture... 18
Figure 7 – Kubernetes POD .. 19
Figure 8 – Testbed ... 20
Figure 9 – Testbeds and Pilots ... 20
Figure 10 – Sandboxes in a dedicated Testbed ... 21
Figure 11 – Sandboxes in a shared Testbed .. 21
Figure 12 - CI/CD workflow .. 30
Figure 13 – EKS Control Plane deployment [27] .. 31
Figure 14 – INFINITECH blueprint reference testbed .. 41
Figure 15 – Blueprint environment recreation ways ... 42
Figure 16 – Gitlab login .. 44
Figure 17 – List of projects visible to a specific user ... 44
Figure 18 – The INFINITECH groups ... 46
Figure 19 – The Pilot groups .. 46
Figure 20 – Projects under the Blueprint group .. 47
Figure 21 – Gitlab create a new project .. 48
Figure 22 – Gitlab setting new project details ... 48
Figure 23 – Giltab add gitlabinfinitech user to access the new project .. 49
Figure 24 – Git clone an existing project ... 49
Figure 25 – Defining the Jenkins file .. 50
Figure 26 – Checking the webhooks of the project ... 51
Figure 27 – Manually trigger a CI pipeline ... 51
Figure 28 – Checking the status of a CI pipeline .. 52

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 92

Figure 29 – Specific pipeline details .. 52
Figure 30 – Checking the logs of a CI pipeline ... 53
Figure 31 – Infinistore project files .. 54
Figure 32 – Maven project files ... 55
Figure 33 – Project ID .. 57
Figure 34 – mvn command output .. 57
Figure 35 – Gitlab project files ... 58
Figure 36 – Overall architecture of the Pilot-Ref solution ... 59
Figure 37 – Gitlab list of available groups ... 60
Figure 38 – Creating the pilot-specific backend project .. 61
Figure 39 – Gitlab Project users and roles ... 61
Figure 40 – Our pilot-ref/backend project .. 62
Figure 41 – Setting Jenkins for our pilot-ref/backend project .. 63
Figure 42 – Checking the CI pipeline for our pilot project ... 64
Figure 43 – Checking the logs of the CI pipeline of our pilot project .. 64
Figure 44 – Pilot-ref Gitlab project .. 71
Figure 45 – Infinistore StatefulSet manifest .. 72
Figure 46 – Infinistore Service manifest .. 73
Figure 47 – Backend container spec .. 73
Figure 48 – lx-kafka-configmap Configmap manifest .. 74
Figure 49 – lx-kafka StatefulSet manifest .. 74
Figure 50 – Lx-kafka properties file ... 75
Figure 51 – postscript.sh script .. 76
Figure 52 – Jenkins deployment stages ... 77
Figure 53 – Jenkins build log .. 78
Figure 54 – Pilot #5b workflow .. 82
Figure 55 – Prototype_v2 components diagram ... 84
Figure 56 – #5b blueprint reference architecture ... 85
Figure 57 – Pilot #2 workflow .. 86
Figure 58 – Pilot #2 blueprint reference architecture ... 88

List of Tables
Table 1 – Abbreviations ... 7
Table 2 – Prototype_v2 vs Blueprint_v2 components .. 83
Table 3 – Prototype vs Blueprint components .. 87
Table 4 – Mapping of DoA/Tasks Objectives with Deliverable achievements .. 89
Table 5 – Mapping of DoA/Tasks KPIs with Deliverable achievements .. 90

file:///C:/_OD/OneDrive%20-%20Hewlett%20Packard%20Enterprise/_Print/INFINITECH-D6.5-Tools%20and%20Techniques%20for%20Tailored%20Sandboxes%20and%20Management%20of%20Datasets-II-v3.0.docx%23_Toc78884613

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 92

Abbreviations/Acronyms
Table 1 – Abbreviations

API Application Programming Interface

AI Artificial Intelligence

AWS Amazon Web Services

AWS EBS Elastic Block Store

AWS EKS Elastic Kubernetes Service

AWS ELB Elastic Load Balancer

AWS KMS Key Management Service

BOC Bank Of Cyprus

CA Certificate Authority

CICD Continuous Integration Continuous Development

CNI Container Network Interface

DevOps Development and Operations

DNS Dynamic Name Resolution

ERP Enterprise resource planning

HCL HashiCorp Configuration Language

HTAP Hybrid Transactional and Analytical Processing

IAC Infrastructure As Code

IAM Identity and Access Management

IoT Internet Of Things

K8s Kubernetes

LDAP Lightweight Directory Access Protocol

ML Machine Learning

MLOps Machine Learning and IT Operations

PoC Proof of Concept

PV Persistent Volume

PVC Persistent Volume Claim

REST REpresentational State Transfer

SME Small Medium Enterprise

SSH Secure Shell Protocol

UI User Interface

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 92

YAML YAML Ain't Markup Language

VPC Virtual Private Cloud

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 92

1 Introduction
INFINITECH is developing and validating BigData, IoT and Artificial Intelligence (AI) technologies for the
finance and insurance sectors. In this direction, the project is advancing the state of the art in several
technological development areas such as infrastructures for integrated, incremental and real-time analytics,
semantic interoperability, as well as decentralized information sharing between stakeholders of the sector.
Furthermore, the project designs and implements a range of pilots and use cases that aim at validating these
technologies in real-life scenarios of the sectors.

Within INFINITECH, WP6 – Tailored Sandboxes and Testbeds for Experimentation and Validation – aims to
achieve the following objectives:

i. To analyse the existing testbeds and specify their enhancements and upgrades.
ii. To provide tools and techniques for creating tailored sandboxes based on the selection of proper

INFINITECH data assets, technological & regulatory building blocks.
iii. To provide a mechanism for integrated management of testbeds’ datasets, based on a continuous

integration approach.
iv. To establish the 10+2 testbeds for experimentation and validation, including all relevant sandboxes.
v. To ensure continuous technical support for all testbeds, while establishing processes for

certification/standardization of digital finance/insurance solutions.

1.1 Objective of the Deliverable
This document describes the intermediate results of INFINITECH WP6 Tasks T6.2 “Mechanisms and Tools for
Tailored Sandboxes Provision and Configuration” and T6.3 “Integrated Management of Testbeds' Datasets”
and provides the second version (D6.5) of the deliverable (out of the three foreseen in the WP6 work plan).
With respect to the general WP6 objectives mentioned before, this deliverable mainly focuses on objectives
ii. and iii.

The results that have been achieved during the work provide key contributions for the fulfilment of the 2nd
major WP6 milestone (MS14 – Second Version of ALL Sandboxes & Testbeds Available – foreseen for M24 of
the project) and provide the second release of the proposed tools and techniques.

The document is (on purpose) self-contained, i.e. there’s no need to read the previous version (D6.4) to get
a full understanding of the updated contents and achieved results. In particular, this release includes
additional and enhanced features with respect to the previous one, which can be summarized as:

• General updates and enhancements of the proposed tools and techniques (in Chapter 4);

• General updates and enhancements of the INFINITECH blueprint reference testbed (in Chapter 5)

• Blueprint guidelines for the “INFINITECH way” deployments of project pilots and technologies (in
Chapter 6)

• Concrete implementation of the “INFINITECH way” blueprint guidelines described in the previous
Chapter in the context of two of the official INFINITECH pilots, the so-called “INFINITECH blueprint
pilots” (in Chapter 7)

The document is the companion textual specification of the other major result of the deliverable: the second
and intermediate release of the proposed tools and techniques, which have been also integrated and
deployed into the INFINITECH blueprint reference testbed package, designed and implemented using two of
the target INFINITECH infrastructures.

The document and the implemented INFINITECH blueprint reference testbed setup constitute the overall
deliverable output.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 92

1.2 Insights from other Tasks and Deliverables
The following picture (Figure 1) depicts the interconnections between all the tasks in Work Package 6:

Figure 1 – Task dependencies in WP6

An important input within WP6 for these tasks are the outcomes of Task 6.1 and its second available
deliverable “D6.2 – Testbeds Status and Upgrades – II”, which mainly contains an updated analysis of
Testbeds infrastructure (hardware & software) that each Pilot will use for Pilot development and the relevant
Sandboxes that will be hosted.

Moreover, the outcomes of T6.2 and T6.3 will continue to feed the work of T6.4 and T6.5 for the deployment
and customization in the target field infrastructure of the proposed tools and techniques for testbeds,
sandboxes and management of testbeds’ datasets, and finally will also continue to feed the work of T6.6 that
specifies and implement processes for certifying and standardizing digital finance/insurance solutions in the
project’s tailored sandboxes and testbeds.

Furthermore, looking to INFINITECH outside the WP6 border (and as consistently done since the beginning
of WP6 activities) the work done in T6.2 and T6.3 embodies a strict and continuous collaboration and
alignment with the INFINITECH work packages 2-3-4-5 tasks and partners, towards the integration of the
delivered outcomes (e.g. the INFINITECH Reference Architecture proposed by WP2 or datasets management
concepts by WP3) in a consistent way. Moreover, it has taken into account the preliminary feedback coming
from the 1st round of the INFINITECH work package dedicated to the Large Pilots’ Operations and
Stakeholders’ Evaluation of the proposed Financial and Insurance Services (WP7).

In the end, the overall progress of such WP6 tasks will be one of the major drivers of the upcoming 2nd round
of the WP7 Pilots’ Operations and Stakeholders' Evaluation.

1.3 Structure
The deliverable consists of the following chapters:

• Chapter 2 “Relation to the general INFINITECH Reference Architecture” provides a summary of the
INFINITECH Reference Architecture approach, and how the work done in the D6.5 deliverable relates
to it in a coherent way

• Chapter 3 “Tools and techniques for Testbeds and Sandboxes” describes the approaches and
technologies leveraged to implement the Testbeds and Sandboxes concepts within the INFINITECH
project

• Chapter 4 “Tools and techniques for Management of Datasets ” describes the tools and techniques
that leveraged for the management of datasets within the INFINITECH project

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 92

• Chapter 5 ”Overview of the INFINITECH blueprint reference testbed” describes the intermediate
design and implementation of the INFINITECH blueprint reference testbed, through the actual
realization (with a full compliance) of the INFINITECH Reference Architecture Development and
Deployment views.

• Chapter 6 “Blueprint guidelines for the “INFINITECH way” deployments of project pilots and
technologies describes the guidelines for the partners about how to organize their artefacts in the
project’s code repository, and make use of the CI/CD pipelines to i) make their solutions available to
other partners and ii) automate the deployment of a pilot.

• Chapter 7 “Implementation of the Blueprint guidelines to INFINITECH blueprint pilots” provides the
description of the actual and concrete implementation of the “INFINITECH way” Blueprint guidelines
described in the previous chapter to two of the official INFINITECH pilots.

• Chapter 8 ”Conclusions” summarizes the results of the work done in the deliverable and the next
steps foreseen for the related tasks.

• Chapter 9 “Appendix A: Literature” provides details of all the cited work.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 92

2 Relation to the general INFINITECH Reference
Architecture
This chapter illustrates a summary of the updated INFINITECH Reference Architecture approach, described
in depth in deliverable “INFINITECH D2.14 – Reference Architecture – II”, and how the work done in the D6.5
deliverable relates to it in a coherent way.

2.1 INFINITECH Reference Architecture
The INFINITECH Reference Architecture (IRA) leverages the “4+1” architectural view model as the
methodology to cover all the aspects of the different problems the Project and the Consortium want to
address.

The “4+1” architectural view model [3] is a methodology to design an architecture for a software platform,
having the main capacity of describing it from 5 concurrent “views”.

These views represent the different stakeholders who could deal with the platform and the architecture,
from the management, development and user perspectives. The four main views which facilitate the
definition and design of the architecture are the logical, process, development and physical ones, while the
“+1” view is represented by the use cases or scenarios, thus making this model an abstraction of the
developed solution/platform and the basis for the development.

Below, the meaning of the different views is explained:

● Logical view: it represents the range of functionalities or services that the system provides to the

end users, and can be shown as block diagrams.

● Process view: it represents the system processes and data flows and how the different processes

and building blocks communicate between each other, with details of the runtime behaviour of the

system.

● Development view (or Implementation view): it illustrates the software management aspects of the

system, from the programmer’s point of view.

● Physical view (or Deployment view): it describes the lower levels of the architecture, dealing with

the physical infrastructures where the software components are deployed and run, and the physical

connections between them. Deployment diagrams can represent it.

● Scenarios: these represent the architecture of the system explained from the end user’s point of

view too, with the description of use cases. The use cases or “scenarios” aim at describing some

possible functioning situations of the system and interactions between different components. The

validation and assessment of functionalities are usually performed by this view.

The INFINITECH RA presented in Figure 2 defines layers as a way to logically group components.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 92

Figure 2 – INFINITECH Reference Architecture logical view

The identified layers are:

• Data Sources: at the infrastructure level, there are the different sources of data (database
management systems, data lakes holding non-structural data, etc.).

• Ingestion: a layer of data management usually associated with data import, semantic annotation and
filtering from data sources.

• Security: a layer for management of the clearance of data for security, anonymization, cleaning of
data before any further storage or processing.

• Management: a layer responsible for the data management aspects, including the persistent storage
in the central repository and the data processing enabling advanced functionalities such as Hybrid
Transactional and Analytical Processing (HTAP), polyglot capabilities, etc.

• Analytics: a layer for the AI/ML/DL components.

• Interface: a layer for the definition data to be produced for clients (e.g., user interfaces, etc.).

• Cross Cutting: a layer with service components that provide functionalities orthogonal to the data
flows (e.g., Authentication, Authorization, Accounting, etc.).

• Data Model: a cross-cutting layer for modelling and semantics of data in the data flow.

• Presentation/Visualization: a layer usually associated with the presentation applications (desktop,
mobile apps, dashboards and the like).

It should be noted that the IRA does not impose any pipelined or sequential composition of nodes. However,
it is recommended to consider each different layer and the relative components to solve specific problems
of the use case.

In the end, the major D6.5 document purpose, and its relation to IRA with a full alignment to its building
blocks, is to describe in particular how the IRA Development and Physical views have been tackled and

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 92

designed by the Consortium in terms of the concrete specification and realization of the fundamental and
target INFINITECH concepts of Testbeds, Sandboxes and Datasets management, and related tools and
techniques for their effective setup and deployment in the INFINITECH pilots and validation scenarios.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 92

3 Tools and techniques for Testbeds and Sandboxes
This chapter describes the tools and techniques that will be leveraged to implement the testbeds and
sandboxes concepts within the INFINITECH project, considering that the INFINITECH RA is designed
leveraging a paradigm based on a microservices [4] architecture implementation, with services interacting
among them through REST APIs.

Key pillars for the implementation and deployment of a microservices based architecture are the containers
technology [5] and its leading open source containers orchestration solution, i.e. Kubernetes [6]. Therefore,
in order to understand such methodological and technological choices for the realization of the INFINITECH
RA, some key concepts related to containers, microservices and Kubernetes, and how their appearance in
the IT environments has deeply changed the software development approaches, are presented.

Finally, the details of how the concrete usage of such technologies benefits and enables the definition of the
INFINITECH testbeds and sandboxes concepts are also provided.

3.1 Containers benefits
In the last few years there has been a strong transformation in conceptualising benefits of containers, similar
to what happened in the early 2000s with the advent of virtualization, due to containers’ spread which led
to rethinking both how to manage the infrastructure and how to design and build the applications.

The advent and the diffusion of containers has made it possible to improve the computational management
of infrastructures, thanks to the possibility of removing the overhead generated by the use of the hypervisor
(integrated software that allows to virtualize the HW resources of a server and make them available among
several applications), and through the usage of the functionalities already available within the Linux OS
kernel, as in Figure 3.

Figure 3 – VM vs Container

The container engine, to date the most used one is Docker [7], takes advantage of Linux-Control groups and
Linux-Namespaces to run containers like VMs isolated from each other:

• Linux-Control groups: Allow each container to get its fair share of memory, CPU, disk I/O and
Network stack. At the same time a single container cannot bring the system down by exhausting one
of those resources.

• Linux-Namespaces: Provide the possibility to isolate the processes running into a container from
processes running in another container or in the host system.

In the end, a container is a package that contains code, system libraries, dependencies and software tools.

An example is given in Figure 4.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 92

Figure 4 – Container kernel properties

The main advantages to using containers to respect VMs can be summarized in the following macro points:

• Size: A container is small.

• Overhead: No full OS is required.

• Speed: Boot time is faster.

• Scaling: Real time provisioning.

At the same time, to take advantage of containers it is necessary to rethink and redesign the currently
monolithic applications as microservices based applications.

3.2 Microservices approach
The spread of containers led, as already mentioned, to the necessity to change the approach of the
developers in the creation of an application, moving from design of monolithic applications, where the
various components (generally UI, Business logic and Data-layer) were strongly coupled among them, to
microservices applications where the various components (i.e. microservices) are decoupled from each other
(see Figure 5)

Figure 5 – Monolithic vs Microservice

This methodological change has both advantages and disadvantages.

The advantages can be summarized as:

• Simple to develop: Each microservice is independent and small.

• Simple to upgrade: Since each microservice is independent it’s possible to upgrade each component
independently.

• Simple interaction: Each microservice communicates with each other through well-defined and
standard interfaces (API).

• Simple to scale: Each microservice can be scaled independently.

• Scale on demand: It is possible to run multiple microservices behind a load balancer to scale on
demand request.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 92

The disadvantages of the methodological change can be summarized as:

• Complexity: Splitting an application into multiple independent microservices increases the
complexity of the deployment process.

• Monitoring: Monitoring each microservice requires having many metrics and logs to manage it.

• Performance: All communications occur on the network so these are slower than memory
communications.

• Debugging: a Monolithic application is much easier to debug and test due to the fact it is composed
by single indivisible units.

Our approach for a rapid iterative development of a microservice based software infrastructure builds upon
a widely used methodology like DevOps, as will be described in section 5.1.

3.3 Kubernetes containers orchestration
The arrival on the market of containers and related microservices based applications, on the one hand
enabled applications that quickly scale according to the requirements and that could be easily updated, on
the other hand meant that software previously managed as a single indivisible piece was split into several
dozen microservices (containers), making it more difficult to manage them.

In this context, the necessity to develop a tool that was able to manage the life-cycle of the microservices
(deployment, scaling, and management) arose: such tool was developed by Google with the name of "Project
Seven of Nine "and released as open source software in 2014. Today such tool is widely known as Kubernetes.

Kubernetes provides:

• Service discovery and load balancing
Kubernetes can expose a container using the DNS name or using its own IP address. If traffic to a
container is high, Kubernetes is able to load-balance and distribute the network traffic so that the
deployment is stable.

• Storage orchestration
Kubernetes allows to automatically mount a storage system of different types, such as local storages,
public cloud providers, and more.

• Automated rollouts and rollbacks
You can describe the desired state for your deployed containers using Kubernetes, and it can change
the actual state to the desired state at a controlled rate. For example, you can automate Kubernetes
to create new containers for your deployment, remove existing containers and adopt all their
resources to the new containers.

• Automatic bin packing
You provide Kubernetes with a cluster of nodes that it can use to run containerized tasks. You tell
Kubernetes how much CPU and memory (RAM) each container needs. Kubernetes can fit containers
onto your nodes to make the best use of your resources.

• Self-healing
Kubernetes restarts containers that fail, replaces containers, kills containers that do not respond to
your user-defined health check, and does not advertise them to clients until they are ready to serve.

• Secret and configuration management
Kubernetes lets you store and manage sensitive information, such as passwords, OAuth tokens, and
SSH keys. You can deploy and update secrets and application configuration without rebuilding your
container images, and without exposing secrets in your stack configuration.

3.3.1 Kubernetes architecture

A Kubernetes (aka K8s) cluster is made up of two macro blocks, the first one called Control Plane (Master)
and the second one called Data Plane (Worker).

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 92

The Control Plane constitutes the brain of the cluster and internally it is made up of the following
components:

• Kube-APIserver is the component that exposes cluster API and truly is the main component, since
Kubernetes has been designed and built to base all the operations on the use of the API.

• Etcd is a key value database that maintains all information relating to the status of the cluster.

• Kube-scheduler schedules which nodes of the Data Plane runs the containers (in Kubernetes named
POD, the smallest deployable units of computing that can be created and managed in Kubernetes)
based on the resources required, cluster status and affinity and anti-affinity rules.

• Kube-controllermanager consists of a set of control processes which:
o Check if cluster nodes are active.
o Check if number and status of running POD is aligned with the required one, in case some

POD became unavailable for example.
o Control and create tokens to access on the K8s resource.
o Populates the Endpoints object (that is, joins Services & PODs).

The Data Plane is the part where the workload is carried out, i.e. where the PODs are put into execution and
it is characterized by the following components:

• Kube-proxy is a proxy that allows communication to the PODs from within and outside the cluster.

• Kubelet checks that PODs are running.

• Container runtime (engine) is software responsible for running containers; Kubernetes can use any
CRI-O implementation like: Docker, CRI-O and containerd.

In Figure 6 the Kubernetes Cluster components are depicted:

Figure 6 – Kubernetes Architecture

For an outline of the entire Kubernetes solution, see the documentation on kubernetes.io.

However, for the purpose of this chapter it is sufficient to now outline two main concepts available in
Kubernetes that we will use later to implement the Sandbox concept.

1. Namespaces: They are a logical grouping of a set of Kubernetes objects to whom it’s possible to apply
some policies, in particular:

o Quote sets the limits on how many HW resources can be consumed by all objects.

https://kubernetes.io/

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 92

o Network defines if the namespace can be accessed or can access to other Namespaces, in
other word if the Namespace is isolated or accessible.

Different policies can be given to different namespaces.

2. POD (Figure 7): This is the simplest unit in the Kubernetes object. A POD encapsulates one container,
but in some cases (when the application is complex) a POD can encapsulate more than one container.
Each POD has its own storage resources, a unique network IP, access port and options related to how
the container/s should run.

Figure 7 – Kubernetes POD

3.4 INFINITECH Testbeds
At the time of writing and in alignment with the content reported in the major current outcome of WP6 task
T6.1 (see section 1.2), i.e. the deliverable “D6.2 – Testbeds Status and Upgrades – II”, INFINITECH will make
available a number of testbeds for experimentation, testing and validation of BigData, AI and IoT solutions,
including:

• 10 testbeds that are established in the data centres of incumbent financial organizations (on premise
testbeds).

• 1 testbed that will be provisioned and established in order to support the experimentation of the
FinTech and InsurTech pilots and enterprises of the consortium, hosted on the partner NOVA’s Data
Center.

• 1 testbed that will be provisioned and established in order to support the experimentation of the
INFINITECH blueprint reference testbed (see Section 5 4.2 of the deliverable), hosted on the AWS
(Amazon Web Services) [8] public provider.

Accordingly, the current, (at the time of writing, subject to possible evolutions along the project lifecycle),
INFINITECH project plan is to deliver 15 pilots: 10 out of 15 will be carried out on dedicated on premise Data
Centres, while the remaining 5 out of 15 will be carried out on the NOVA’s Data Centre, a shared INFINITECH
Data Centre. In addition, a blueprint reference testbed will also be provided, built upon the requirements of
one of the INFINITECH pilots, as stated above.

The set of hardware resources like storage, compute and network will be considered a testbed, as shown in
Figure 8.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 92

Figure 8 – Testbed

It is not relevant where these resources are deployed: they can be inside a private Data Centre or in any cloud
provider.

Therefore, the 15 pilots that have been foreseen will be executed in 10+2 testbeds, in addition to the
blueprint reference testbed, as shown in Figure 9.

Figure 9 – Testbeds and Pilots

3.5 INFINITECH Sandboxes
Each INFINITECH pilot will have one or more Use Cases (realized by one or more pilot Apps, each one realized
by one or more INFINITECH microservices): in our vision, each Use Case will be a Sandbox provisioned by the
leverage of Kubernetes Namespaces.

In fact, as we already said in section 3.3.1, the Kubernetes Namespace feature makes it possible to logically
isolate the objects (mainly PODs) inside it from other Namespaces. Therefore, each dedicated Testbed will
only have one Kubernetes cluster with as many Namespaces as the number of Use Cases to be implemented
for a single pilot (see Figure 10). In the other case, the shared Testbed will have one Kubernetes cluster for
each pilot it has to host and manage (see Figure 11).

In the end, in this general context, each pilot App will be realized as a Kubernetes POD.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 92

Figure 10 – Sandboxes in a dedicated Testbed

Figure 11 – Sandboxes in a shared Testbed

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 92

4 Tools and techniques for Management of Datasets
This chapter describes the tools and techniques that will be leveraged for the management of datasets within
the INFINITECH project and how they are linked and mapped with the concepts and techniques related to
testbeds and sandboxes (see Section 3) and also with respect to the blueprint reference testbed environment
(see Section 5).

4.1 Data Sources and Data Access
The INFINITECH platform aims to host and serve the needs of a variety of applications and tools used by the
finance and insurance sectors, which have diverse needs and requirements for data access. We envisage that
different types of data sources will be supported such as:

• structural, semi-structural or completely unstructured data; or

• static data, often called data at-rest or streaming data, while the source might be stored on premise,
in a third-party organization or should be imported inside the deployed sandbox. For instance, a
common solution might need to use historical data in order to perform a post processing and apply
ML/DL analytics for risk assessment.

However, modern enterprises are not only interested in extracting knowledge and identifying risks or
opportunities based on historical and often obsolete data, but they also need to extract this type of
information from operational data, which introduces a significant challenge regarding data management
from the tailored sandbox perspective. To further complicate the needs of the platform, other requirements
coming from the finance and insurance sectors are the identification of potential fraudulent financial
transactions as they occur, or pre-processing of data from IoT devices as it arrives. Data analysts often tend
to use different datasets that can be retrieved from third party organizations or other external sources such
as social media to enrich their algorithms with deeper knowledge in order to build a more accurate profile of
their customers, either referring to individuals or to enterprises. Finally, additional considerations must be
taken into account when dealing with the volume and privacy of the data of a finance organization, where
moving data from the source to a sandbox might not be feasible either due to regulatory constraints, or
simply due to the overall volume of the datasets.

In order to address all these requirements, the INFINITECH RA has been designed in order to take into account
the different types of data sources. With respect to the implementation to support the functionality needed
for data management and processing, details have been given in the corresponding deliverables of WP3,
WP4 and WP5.

Looking at the techniques and tools that will allow the tailored sandboxes to enable the data management
of these diverse environments, the focus is on data access. In other words, how the different components
that will be deployed inside the sandbox can be integrated in a way that allows them to make use of all the
aforementioned data sources.

We can identify 6 different focuses for data access:

• Static data ingestion

• Dynamic data ingestion

• IoT streaming

• Direct access to on premise data sources

• Blockchain data access

• Third party data access

In the following subsections, we will describe the details of each of those different means of data access and
will analyse the requirements and technical considerations that need to be tackled by the infrastructure,
when orchestrating the deployment and maintenance of the integrated solution. Moreover, in the following

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 92

we will give more insights on how the INFINITECH platform overcomes the barriers and deals with the
challenge of securely allowing those diverse means for data access, thus enabling the automated deployment
of the integrated solution.

4.1.1 Static data ingestion

This is the most typical case for data access that is foreseen to be a requirement for the majority of the cases
that will need to be deployed into an INFINITECH sandbox. The data analyst has their own data stored into a
database management system or other form of persistent storage, and needs to extract a specific dataset
and ingest it into the central data repository deployed inside the sandbox so that they can use the tools
provided by the platform to perform the analysis. They will have to extract this information in a static file in
a specific format (i.e. csv) and trigger the data ingestion process of INFINITECH. We call this data access mode
static data ingestion, as the file will be created once, and will be used in each deployment. This access mode
also covers the needs for a data analyst to make use of an existing synthetic dataset that has been provided
and made available to the platform, via the INFINITECH marketplace. The generated file must be stored into
a persistent storage volume and the latter must be visible from the sandbox so that the tools deployed inside
can have access to it. This mainly refers to the data ingestion component that will take care of the data
migration process, possibly applying a pre-processing algorithm to clean, harmonize and anonymize the
dataset and finally store the raw data into the data repository. It will also support cases where direct access
to the static file might be needed by the analytical tools on the analytics layer of the RA, where there is no
need for additional processing by the lower logical levels of the architecture (i.e. a spark job needs to grab
everything from a csv file, where no additional processing like a filter or join operation can be pushed down
to the processing layers).

4.1.2 Dynamic data ingestion

In this scenario, data ingestion does not take place once in the initialization of the sandbox, rather the data
might be migrated periodically to the data repository. We call this dynamic data ingestion as the dataset
inside the sandbox will be updated with new data after a given period of time. This will cover cases where
the requirement is to have the sandbox deployed, integrated and synchronised with the data sources of the
organisation. For instance, the integrated solution might need to get updated with the current snapshot of
the data, so that the data analyst can benefit from a daily picture of the transactions of any given customer.
Rather than having a human intervene to manually extract the data needed into a static file that will be
loaded into the system, the data provider can implement specific APIs so that the data migration can be done
in a fully automated manner every time (i.e. end of the business day). The data ingestion component of
INFINITECH will need to open a connection to those APIs in order to retrieve the data according to the given
specified protocol or configuration. The APIs can vary, from REST implementations that imply HTTP
connections, to database specific ones (JDBC, ODBC, etc.) that will imply TPC connections, or even SFTP
connections to a file server. This introduces the requirement for the sandbox to allow the INFINITECH
component responsible for this job to access endpoints outside the sandbox using different communication
protocols. Regarding the need for data access, only the data ingestion component will need to have access
to those endpoints, in order to migrate the data into the central data repository. All other components in the
different logical layers of the RA will retrieve the data via the data repository.

4.1.3 IoT Streaming

As we already mentioned, it becomes essential for modern applications in the finance and insurance sector
to perform real-time analysis in order to respond to possible risks, identify opportunities or even detect fraud
transactions, as they occur. This type differentiates from the others as it does not rely on data at-rest, but on
streaming. As a result, content event processing over a data stream is becoming popular. Data transmitted
over a stream is usually small and contains information from either a sensor deployed in a vehicle or in the
soil, information coming from a finance transaction, logging information produced when a user is navigating

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 92

the web or even a tweet or post on social media. We consider all these types of data as IoT, and we categorize
this type for data access as IoT Streaming. The unified query processing framework of INFINITECH will require
access to data streams, as it provides the means to deploy continuous queries that can perform live
processing over the content of the streams, possibly making use of the other layers that allow the
combination of operators targeting live data with static data at-rest. The unified query processing framework
contains a streaming engine that consumes the stream from the source. The requirement for the
infrastructure in this case is to allow the components that are deployed inside the sandbox to be accessible
from outside of the sandbox. To concretize the scenario, the sources of the data streams must connect to
the query processing framework of the platform by establishing static TPC connections to the latter. All other
components in the different logical layers of the RA will retrieve data and information from this layer, so
there is no need for others to be accessible from external data sources.

4.1.4 Direct access to on premise data sources

This covers scenarios where it is not enough for the integrated solution to have access only to a snapshot of
the dataset that has been periodically loaded into the sandbox, but it requires access to the overall dataset.
It will also cover scenarios where data cannot be migrated into the sandbox due to their volume or due to
other regulatory constraints. In the case of ‘big data’ management, it might be better to push down the data
processing to the source and grab only the results that will feed the tools and components in the analytical
layer, rather than moving all the data inside the sandbox to be loaded to the central repository beforehand.
We call this mode for data access as direct access to on premise sources as the sandbox needs to access
directly the data source and send the processing there, and it will not migrate any data inside. The polyglot
component of INFINITECH is responsible for this functionality, which lies in the processing layer of the RA,
even if it pushes down to processing to the source. However, when the processing takes place, from a logical
point of view, the polyglot takes care of this and all other layers in the analytical layers will make use of the
latter. The requirements for the sandbox are similar with the direct data ingestion mode, but it is the polyglot
component now that needs to open connections to external endpoints from the sandbox, using different
communication protocols, varying from HTTP, to TPC and SFTP.

4.1.5 Blockchain data access

As the name of this access mode implies, it covers scenarios where secure access to data stored in the
Blockchain is required. We are interested here in the uses of Blockchain as a means of persistent storage of
data, and not as a means of verifying the consensus for a given transaction. As it has been described in the
corresponding deliverables of the tasks related with the Blockchain technology in WP4, the access is being
granted via a specified API. Therefore, from a functional view, the components that need to access Blockchain
data will have to open a connection to the provided APIs and retrieve data. The Blockchain data needs no
pre-processing to the source nor can it benefit from the processing capabilities of the INFINITECH data
management components. Therefore, it is the components that are lying in the analytical layer of the RA that
need to be granted access to the Blockchain storage via the appropriate designated endpoint. However, from
the perspective of the infrastructure that will orchestrate the automated deployment and maintenance of
the integrated solution, the requirements are similar to the dynamic data ingestion: to allow components
inside the sandbox to establish connections with endpoints that are located externally from the sandbox.

4.1.6 Third Party data access

In this access mode, the components and analytical tools provided by the INFINITECH platform need to
retrieve data and information that has been provided by external sources. This scenario is different from the
previous ones, and especially to the direct access to on premise sources, as the third party does not grant
access to its entire dataset, rather it provides specific APIs that will allow others to extract only specific
information. In other words, it can allow to submit an operational query (i.e. how popular is the given trend
in the articles of UK during the last week) and retrieve its result. The third-party organization has access to

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 92

other datasets, and has already performed an initial pre-processing that generates the results of the types of
queries (also called “consults”) that its API allows it to perform. Therefore, there is no need for the data
management components that are suited in the processing layers of the RA to perform any further analysis
and this information can be directly used by the analytical tools. However, from the perspective of the
infrastructure that manages the sandboxes, the requirement is the same as the Blockchain: to allow the
components deployed in the sandbox to open connections to APIs that are deployed outside.

4.2 Datasets management from the Blueprint reference environment
perspective

Even if we have several and diverse types for data access, the requirements for the datasets and data access
management tools and the techniques from the blueprint reference environment perspective (see Section
5), or rather from the testbeds and sandboxes perspective, can be described and addressed by grouping the
methodologies presented in the previous paragraphs into the following macro categories:

1. Static data ingestion: The blueprint must be able to store static data into a persistent volume that
needs to be accessible by the sandboxes. This requirement is fulfilled using the Kubernetes PV
(Persistent Volume) available inside the blueprint and in particular by using the PVC (Persistent
Volume Claim) that allows splitting the PV according to the sandboxes’ needs.

2. Dynamic data ingestion - Blockchain data access - Third party data access: The blueprint must be
able to allow the components of different layers of the logical architecture view to open connections
to external endpoints. Accordingly, the components deployed inside the sandboxes need to
communicate with the external endpoints. This communication is permitted by default, unless
otherwise stated, through the API Gateway which forwards HTTP / HTTPS requests to and from the
sandboxes.

3. IoT Streaming - Direct access to on premise data sources: The blueprint must be able to allow for
components that have been already deployed to connect and maintain open connections with
components that have been deployed inside a sandbox. Accordingly, the components that have been
deployed inside a sandbox have to maintain an open connection on TPC protocol. In this case the
connections are not managed by the API Gateway, but using the Kubernetes NodePort. The NodePort
functionality exposes the sandbox service on each worker’s IP at a static port in the range between
30000 and 32767. Each worker proxies such port (the same port number on every Node) into the
sandbox service. In order to clarify this concept, let’s suppose that the sandbox service works on the
port 390: this port is then remapped on the port 30390 on each worker node, and in this way the
sandbox can then be reached by external components which can reach the nodes and maintains an
open connection on the port 30390. In the blueprint environment for security reasons, the
Kubernetes worker nodes are deployed in a private network, so in order to expose the NodePort to
the outside world a Bastion [9] host has been implemented. The Bastion is based on HA-Proxy [10],
a free reverse proxy software, and it is the only system allowed to connect with the Kubernetes nodes
that exposes a public IP as a bridge from the nodes and internet.
So in the above example in order to connect with the NodePort 30390 on the worker nodes, it’s
mandatory to connect on Bastion IP public on the same port and then it will forward, balancing the
requests, on all worker nodes.

Let’s now see how we provide dataset management from the blueprint reference perspective in practice. We
will demonstrate how we solve these concepts by using the project’s pilot#2 (“Real-time risk assessment in
Investment Banking”). This pilot requires the use of an historical data set to be migrated into the Infinistore
component deployment deployed in the sandbox and to additionally ingest with data in real-time coming
from an external data stream. The latter is being achieved using the INFINITECH image of Apache Kafka
queue, which has been extended with direct connectors to the Infinistore and will be part of the tailored
sandbox for this pilot.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 92

Loading the historical data into the Infinistore for new deployment of the sandbox fits into the static data
ingestion category. Therefore, we will make use of a PVC and we will upload the data there once. Then, we
will mount the PVC with the POD of the Infinistore in each deployment, and during the initialization phase,
we will migrate the data into the central repository. The following code snippet depicts the definition of our
PVC.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: infinistore-datasets-pvc

 namespace: pilot2

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: ebs-sc

 resources:

 requests:

 storage: 10Gi

Here, we request a 10GB storage where the historical dataset will be uploaded. Then, the following code
snippet depicts how to mount this storage element to the POD of the Infinistore:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: infinistore

 namespace: pilot2

 labels:

 app: infinistore

spec:

 template:

 spec:

 containers:

 volumeMounts:

 - name: infinistore-datasets-storage

 mountPath: /datasets

 volumes:

 - name: infinistore-datasets-storage

 persistentVolumeClaim:

 claimName: infinistore-datasets-pvc

Firstly, we define our statefulset for the INFINSTORE which will make use of the infinistore-datasets-pvc that
we previously define and contains the already uploaded historical dataset. Then, we mount the persistent
storage to the folder of the POD where the Infinistore is expecting to find such information.

Regarding the need for data ingestion of streaming data into the deployed sandbox, this fits into the category
of IoT Streaming - Direct access to on premise data sources. As a matter of fact, we will rely on the NodePort
services of EKS along with the Bastion proxy. As the configuration of the proxy has been made by the system
administrator of the infrastructure, it is not the focus of this document. For our scenario, we need to allow

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 92

and maintain TCP connections to ports 9092 (for the data stream to connect to the Kafka worker instance)
and 8081 (for the data stream to interact with the embedded Avro Registry, in order to serialize the data
items appropriately). The following code snippet depicts how we can define our NodePort to let us do this:

apiVersion: v1

kind: Service

metadata:

 name: lx-kafka-np

 namespace: pilot2

spec:

 type: NodePort

 selector:

 app: lx-kafka

 ports:

 - name: "9092"

 protocol: TCP

 port: 9092

 targetPort: 9092

 nodePort: 30040

 - name: "8081"

 protocol: TCP

 port: 8081

 targetPort: 8081

 nodePort: 30041

Here, we map the POD’s port of 9092 to 30040 and its 8081 to 30041. The Bastio proxy will direct connections
to the external IP in those ports to the same ports of the worker that hosts the POD, which will be then
mapped to the original 9092 and 8081 ones, as described previously. We also notice that both 30040 and
30041 are inside the range between 30000 and 32767. Our final step would be to also set up the
corresponding environment variables of the Kafka container accordingly, via its configmap. The following
code snippet depicts this:

apiVersion: v1

kind: ConfigMap

metadata:

 name: lx-kafka-configmap

 namespace: pilot2

data:

 advertised.url: 18.197.20.179

 advertised.port: "30040"

This information is needed by the Kafka runtime execution environment in order to send to its clients (in our
case, the data streaming) and advertise where they should try to connect. As our image is deployment-
agnostic and can be portable in different testbeds, we need to provide this information in our configuration
file. Here, we can see the number of the advertised port that the client needs to connect and will be later
mapped to the 9092 port that the Kafka worker is listening to inside the sandbox. Last but not least, we also
need to define the external IP of the testbed that is publicly accessible. The Bastion proxy will take care of
directing the connections to this IP to the specific POD.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 92

5 Overview of the INFINITECH blueprint reference
testbed
This chapter describes the intermediate design and implementation of the INFINITECH blueprint reference
testbed, through the actual realization (with a full compliance) of the INFINITECH RA Development and
Deployment views, in terms of the concrete specification and realization of the fundamental and target
INFINITECH concepts of Testbeds, Sandboxes and Datasets management, and related tools and techniques
for their effective setup and deployment in the INFINITECH pilots and validation scenarios. In other words,
we explain how the concept described in chapter 3 will be realized on the target INFINITECH infrastructure
environments.

The main changes compared to the previous version of this deliverable refer to the methodologies used to
recreate the blueprint environment on the same cloud provider AWS and in the bare-metal environment, as
described in the section 5.2.3.

In particular, the AWS ekctl tool used to create the blueprint environment on AWS has been replaced by
Terraform tool [11]. Terraform has been selected because it is one of the best tools for IaC (Infrastructure as
Code) that allows recreating an infrastructure everywhere, and always in a predictable and safe way. It is an
open-source software with a very large community and it is infrastructure-agnostic, so it has been chosen in
order to avoid any lock-in with AWS functionalities.

At the same time the previous choice to use kubespray tool to create K8s cluster in a bare-metal
environment has been replaced with Rancher tool [12]. This because Rancher has a lot more features than
kubespray.

Rancher is an open source software that facilitates the creation and administration of Kubernetes clusters;
among the different features offered, Rancher has the ability to:

• Create K8s clusters in any environment both public and private cloud

• Include an application catalog

• Provide a centralized infrastructure monitoring system at a multi-cluster level

• Control accesses via RBAC access control system, a feature based on RBAC (Role-Based Access
Control), that enable the integration with various Identity services like LDAP, OpenID and Active
Directory.

All features described above can be managed from a single UI (User Interface) or via REST-API so that it can
be called up by any automation tool.

5.1 Development view
In the context of WP6 and this deliverable, with respect to the Development view, it has been decided to
implement DevOps (Development and Operations) processes. DevOps represents a change in IT culture,
focusing on rapid IT service delivery through the adoption of agile, lean practices in the context of a system-
oriented approach. DevOps emphasizes people (and culture), and seeks to improve collaboration between
operations and development teams. DevOps implementations utilize technology (especially automation
tools) that can leverage an increasingly programmable and dynamic infrastructure from a life cycle
perspective [13].

The practical implementation of DevOps goes through the CI/CD processes, which are delivered through the
combined practices of Continuous Integration (CI) and Continuous Delivery (CD).

In particular:

• Continuous Integration is a practice where development teams frequently commit (many times per
day) application code changes to a shared repository. These changes automatically trigger new builds

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 92

that are then validated by automated testing (as in Development Testing, DevTest [14]), to ensure
that they do not break any functionality.

• Continuous Delivery is an extension of the CI process. It’s the automation of the release process so
that new code is deployed to target environments, typically to test environments, in a repeatable
and automated fashion.

In order to fulfil the INFINITECH project goals, the CI/CD processes have been created in the context of the
blueprint reference testbed environment. Moreover, to build a system working consistently as a whole, the
developers writing the individual components of the INFINITECH platform need an integrated environment
where they can test their components working together with the other services. To support this process, we
implemented a Continuous Integration environment based on EKS (Elastic Kubernetes Service) [15], a
managed Kubernetes service on the AWS public cloud. More details on EKS will be provided in Section 5.2.
Kubernetes is an ideal choice for a Continuous Integration environment, since it allows easy updates of
deployments when new application images are built, with manifests containing deployment configurations
versioned like Git [16] alongside the application source code. Furthermore, it is easy to spin up new test
environments from scratch, which enables future scenarios including automated end-to-end integration
testing. Build agents are also created on demand and removed when done, providing efficient resource
utilization and clean environments to ensure build reproducibility.

On the target cluster, a namespace named devops has been created for hosting the DevOps tools, which are:

• Gitlab [17]: This is a Git repository manager that lets each developer teams collaborate on
INFINITECH’s source code.

• Jenkins [18]: This is the de-facto standard open source automation server for orchestrating CI/CD
workflows.

• Sonatype Nexus [19]: This is a popular artefact repository that also works as a Docker registry, as
required in our case.

• OpenLDAP [20]: This is used as the single user directory for all tools, centralizing authentication and
simplifying management of developer accounts.

• Helm [21]: This is a package manager that streamlines installing and managing Kubernetes
applications.

Figure 12 shows how CI/CD works for a specific partner (e.g. Partner “A”). When a developer pushes new
component code, Gitlab invokes a webhook on Jenkins, which starts any job affected by the code changes.
The job builds the component, runs unit tests and, if everything has worked in a proper way, builds an
updated Docker image and pushes it to Nexus. The following step is deploying the updated component in the
specific partner namespace; in fact, we will have as many namespaces as partners, to maintain the correct
isolation between all INFINITECH partners. In order to deploy as required, the component Helm manager will
be used. At the end of the process, Jenkins sends a notification to a dedicated CI/CD channel on the
INFINITECH Slack [22] project, so that developers are informed that a new build occurred and whether it was
successful or not. In case of errors, developers will have to inspect the build logs, find the problem and correct
it. In case of success, developers will go ahead and test that the new version works correctly in the test
environment.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 92

Figure 12 - CI/CD workflow

Moreover, in the following iteration of WP6 T6.2 and T6.3 tasks and activities (e.g. in the future deliverable

D6.6), we would plan to enhance the process by adopting a DevSecOps [23] approach and including the

related tools like Sonarqube [24]in the CI/CD pipeline.

DevSecOps aims to include security in the software development life cycle from the beginning, following the

same principles of DevOps. Security is then considered throughout the process and not just as an

afterthought at the end of it, so that different kinds of security checks are executed continuously and

automatically, giving developers quick feedback if the latest changes introduced a vulnerability that must be

corrected.

DevSecOps of course requires that security experts work side by side with developers and operations to make

sure that security requirements are addressed and best practices followed, in addition to validating product

design and architecture.

Moreover, in this context, in order to facilitate the Machine Learning (ML) development and testing, we have

also planned to introduce (again, in the following iteration of WP6 T6.2 and T6.3 tasks and activities), the

MLOps [25] (a combination of Machine Learning and IT Operations) methodology focused on:

● Facilitating communication and collaboration between teams.

● Improving model tracking, versioning, monitoring and management.

● Standardizing the machine learning process to prepare for increasing regulation and policy.

This add-on enhanced methodology will enable us to automate the porting of the machine learning

algorithms, as much as possible, in production environments.

Putting this into practice is often very complicated for IT managers, because ML processes are often based

on heterogeneous environments.

Therefore, the first step towards MLOps requires the standardization of these environments as much as

possible, and in this respect the Kubernetes technology and containers provide the abstraction, scalability,

portability, and reproducibility required to run the same piece of software in all these environments. As a

second step, it is necessary to make standard the workflows used for the construction and building of the ML

models.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 92

In this sense, we have selected the Kubeflow [26] platform as a candidate for integration in our blueprint

reference testbed, in order to provide an infrastructure to build models and capable of enabling the

portability of these models and workflows. In particular, ML workflows are defined as Kubeflow pipelines and

a pipeline consists of these steps:

1. Data preparation.

2. Training.

3. Testing.

4. Serving.

Each step is a container and the output of each step is the input of the following step. Once compiled, this

pipeline is portable across different environments.

5.2 Deployment view
In the context of WP6 and this deliverable, with respect to the Deployment view, it has been decided to
create the INFINITECH blueprint reference testbed on the AWS (Amazon Web Services) public provider. In
particular, each such blueprint is hosted on the Amazon EKS (Elastic Kubernetes Service). Amazon EKS is a
managed service that allows the use of a Kubernetes environment without the need to install, operate, and
maintain Kubernetes control plane or nodes.

The EKS control plane (Figure 13) is composed of at least two API server nodes and three etcd nodes that run
across three Availability Zones within a Region. In case of issues, Amazon EKS automatically detects and
replaces unhealthy control plane instances, restarting them across the Availability Zones within the Region
as needed. From the security perspective all information stored on etcd nodes and associated Amazon EBS
(Elastic Block Store) volumes is encrypted using AWS KMS (Key Management Service).

Regarding the data plane, we started using 2 nodes, but we have also defined the Auto Scaling rules in order
to scale the Kubernetes cluster according to the real usage of the platform.

Figure 13 – EKS Control Plane deployment [27]

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 92

5.2.1 Creation of the EKS INFINITECH cluster (Blueprint)

The creation of EKS INFINITECH cluster involves four principal steps:

1. Create a specific IAM (Identity and Access Management) Role able to create a provisioning EKS
cluster.

2. Create the VPC (Virtual Private Cloud).
3. Create the EKS Control plane.
4. Create the Worker node.

To perform all steps, we leveraged on the AWS console and where possible also the CloudFormation
templates that allowed us to simplify the installation steps. For the creation of the IAM role the following
Amazon CloudFormation template has been used:

AWSTemplateFormatVersion: '2010-09-09'

Description: 'Amazon EKS Cluster Role'

Resources:

 eksClusterRole:

 Type: AWS::IAM::Role

 Properties:

 AssumeRolePolicyDocument:

 Version: '2012-10-17'

 Statement:

 - Effect: Allow

 Principal:

 Service:

 - eks.amazonaws.com

 Action:

 - sts:AssumeRole

 ManagedPolicyArns:

 - arn:aws:iam::aws:policy/AmazonEKSClusterPolicy

Outputs:

 RoleArn:

 Description: The role that Amazon EKS will use to create AWS resources

for Kubernetes clusters

 Value: !GetAtt eksClusterRole.Arn

 Export:

 Name: !Sub "${AWS::StackName}-RoleArn"

To create the VPC for EKS we used the following template:

AWSTemplateFormatVersion: '2010-09-09'

Description: 'Amazon EKS Sample VPC - Private and Public subnets'

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 92

Parameters:

 VpcBlock:

 Type: String

 Default: 192.168.0.0/16

 Description: The CIDR range for the VPC. This should be a valid private

(RFC 1918) CIDR range.

 PublicSubnet01Block:

 Type: String

 Default: 192.168.0.0/18

 Description: CidrBlock for public subnet 01 within the VPC

 PublicSubnet02Block:

 Type: String

 Default: 192.168.64.0/18

 Description: CidrBlock for public subnet 02 within the VPC

 PrivateSubnet01Block:

 Type: String

 Default: 192.168.128.0/18

 Description: CidrBlock for private subnet 01 within the VPC

 PrivateSubnet02Block:

 Type: String

 Default: 192.168.192.0/18

 Description: CidrBlock for private subnet 02 within the VPC

Metadata:

 AWS::CloudFormation::Interface:

 ParameterGroups:

 -

 Label:

 default: "Worker Network Configuration"

 Parameters:

 - VpcBlock

 - PublicSubnet01Block

 - PublicSubnet02Block

 - PrivateSubnet01Block

 - PrivateSubnet02Block

Resources:

 VPC:

 Type: AWS::EC2::VPC

 Properties:

 CidrBlock: !Ref VpcBlock

 EnableDnsSupport: true

 EnableDnsHostnames: true

 Tags:

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 92

 - Key: Name

 Value: !Sub '${AWS::StackName}-VPC'

 InternetGateway:

 Type: "AWS::EC2::InternetGateway"

 VPCGatewayAttachment:

 Type: "AWS::EC2::VPCGatewayAttachment"

 Properties:

 InternetGatewayId: !Ref InternetGateway

 VpcId: !Ref VPC

 PublicRouteTable:

 Type: AWS::EC2::RouteTable

 Properties:

 VpcId: !Ref VPC

 Tags:

 - Key: Name

 Value: Public Subnets

 - Key: Network

 Value: Public

 PrivateRouteTable01:

 Type: AWS::EC2::RouteTable

 Properties:

 VpcId: !Ref VPC

 Tags:

 - Key: Name

 Value: Private Subnet AZ1

 - Key: Network

 Value: Private01

 PrivateRouteTable02:

 Type: AWS::EC2::RouteTable

 Properties:

 VpcId: !Ref VPC

 Tags:

 - Key: Name

 Value: Private Subnet AZ2

 - Key: Network

 Value: Private02

 PublicRoute:

 DependsOn: VPCGatewayAttachment

 Type: AWS::EC2::Route

 Properties:

 RouteTableId: !Ref PublicRouteTable

 DestinationCidrBlock: 0.0.0.0/0

 GatewayId: !Ref InternetGateway

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 92

 PrivateRoute01:

 DependsOn:

 - VPCGatewayAttachment

 - NatGateway01

 Type: AWS::EC2::Route

 Properties:

 RouteTableId: !Ref PrivateRouteTable01

 DestinationCidrBlock: 0.0.0.0/0

 NatGatewayId: !Ref NatGateway01

 PrivateRoute02:

 DependsOn:

 - VPCGatewayAttachment

 - NatGateway02

 Type: AWS::EC2::Route

 Properties:

 RouteTableId: !Ref PrivateRouteTable02

 DestinationCidrBlock: 0.0.0.0/0

 NatGatewayId: !Ref NatGateway02

 NatGateway01:

 DependsOn:

 - NatGatewayEIP1

 - PublicSubnet01

 - VPCGatewayAttachment

 Type: AWS::EC2::NatGateway

 Properties:

 AllocationId: !GetAtt 'NatGatewayEIP1.AllocationId'

 SubnetId: !Ref PublicSubnet01

 Tags:

 - Key: Name

 Value: !Sub '${AWS::StackName}-NatGatewayAZ1'

 NatGateway02:

 DependsOn:

 - NatGatewayEIP2

 - PublicSubnet02

 - VPCGatewayAttachment

 Type: AWS::EC2::NatGateway

 Properties:

 AllocationId: !GetAtt 'NatGatewayEIP2.AllocationId'

 SubnetId: !Ref PublicSubnet02

 Tags:

 - Key: Name

 Value: !Sub '${AWS::StackName}-NatGatewayAZ2'

 NatGatewayEIP1:

 DependsOn:

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 92

 - VPCGatewayAttachment

 Type: 'AWS::EC2::EIP'

 Properties:

 Domain: vpc

 NatGatewayEIP2:

 DependsOn:

 - VPCGatewayAttachment

 Type: 'AWS::EC2::EIP'

 Properties:

 Domain: vpc

 PublicSubnet01:

 Type: AWS::EC2::Subnet

 Metadata:

 Comment: Subnet 01

 Properties:

 MapPublicIpOnLaunch: true

 AvailabilityZone:

 Fn::Select:

 - '0'

 - Fn::GetAZs:

 Ref: AWS::Region

 CidrBlock:

 Ref: PublicSubnet01Block

 VpcId:

 Ref: VPC

 Tags:

 - Key: Name

 Value: !Sub "${AWS::StackName}-PublicSubnet01"

 - Key: kubernetes.io/role/elb

 Value: 1

 PublicSubnet02:

 Type: AWS::EC2::Subnet

 Metadata:

 Comment: Subnet 02

 Properties:

 MapPublicIpOnLaunch: true

 AvailabilityZone:

 Fn::Select:

 - '1'

 - Fn::GetAZs:

 Ref: AWS::Region

 CidrBlock:

 Ref: PublicSubnet02Block

 VpcId:

 Ref: VPC

 Tags:

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 92

 - Key: Name

 Value: !Sub "${AWS::StackName}-PublicSubnet02"

 - Key: kubernetes.io/role/elb

 Value: 1

 PrivateSubnet01:

 Type: AWS::EC2::Subnet

 Metadata:

 Comment: Subnet 03

 Properties:

 AvailabilityZone:

 Fn::Select:

 - '0'

 - Fn::GetAZs:

 Ref: AWS::Region

 CidrBlock:

 Ref: PrivateSubnet01Block

 VpcId:

 Ref: VPC

 Tags:

 - Key: Name

 Value: !Sub "${AWS::StackName}-PrivateSubnet01"

 - Key: kubernetes.io/role/internal-elb

 Value: 1

 PrivateSubnet02:

 Type: AWS::EC2::Subnet

 Metadata:

 Comment: Private Subnet 02

 Properties:

 AvailabilityZone:

 Fn::Select:

 - '1'

 - Fn::GetAZs:

 Ref: AWS::Region

 CidrBlock:

 Ref: PrivateSubnet02Block

 VpcId:

 Ref: VPC

 Tags:

 - Key: Name

 Value: !Sub "${AWS::StackName}-PrivateSubnet02"

 - Key: kubernetes.io/role/internal-elb

 Value: 1

 PublicSubnet01RouteTableAssociation:

 Type: AWS::EC2::SubnetRouteTableAssociation

 Properties:

 SubnetId: !Ref PublicSubnet01

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 92

 RouteTableId: !Ref PublicRouteTable

 PublicSubnet02RouteTableAssociation:

 Type: AWS::EC2::SubnetRouteTableAssociation

 Properties:

 SubnetId: !Ref PublicSubnet02

 RouteTableId: !Ref PublicRouteTable

 PrivateSubnet01RouteTableAssociation:

 Type: AWS::EC2::SubnetRouteTableAssociation

 Properties:

 SubnetId: !Ref PrivateSubnet01

 RouteTableId: !Ref PrivateRouteTable01

 PrivateSubnet02RouteTableAssociation:

 Type: AWS::EC2::SubnetRouteTableAssociation

 Properties:

 SubnetId: !Ref PrivateSubnet02

 RouteTableId: !Ref PrivateRouteTable02

 ControlPlaneSecurityGroup:

 Type: AWS::EC2::SecurityGroup

 Properties:

 GroupDescription: Cluster communication with worker nodes

 VpcId: !Ref VPC

Outputs:

 SubnetIds:

 Description: Subnets IDs in the VPC

 Value: !Join [",", [!Ref PublicSubnet01, !Ref PublicSubnet02, !Ref

PrivateSubnet01, !Ref PrivateSubnet02]]

 SecurityGroups: eith

 Description: Security group for the cluster control plane communication

with worker nodes

 Value: !Join [",", [!Ref ControlPlaneSecurityGroup]]

 VpcId:

 Description: The VPC Id

 Value: !Ref VPC

The previous template created the VPC with two public and two private subnets. One public and one private
subnets are deployed to the same Availability Zone. The second public and private subnets are deployed to
a second Availability Zone in the same Region. We have chosen this solution because it is that recommended
by AWS for a critical environment.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 92

After that the VPC is available; it’s possible to proceed with the EKS Control plane creation that can be done
directly from the AWS console at https://console.aws.amazon.com/eks/home#/clusters through the input of
the following parameters:

• Name: INFINITECH-BP

• Kubernetes version: 1.17

• Public and private: true

• role: eksClusterRole (create with in the previous step)

• Encryption: false (Activate if is necessary)

• Subnet: all

• Security groupsInfo: ControlPlane

• Access point Public: True

When the EKS Control plane is available (the creation takes about 15 minutes), it is possible to create the
worker nodes.

In order to add the nodes, it is mandatory to create a specific IAM role named WorkerRole with the following
permissions:

• AmazonEKSWorkerNodePolicy.

• AmazonEKS_CNI_Policy.

• AmazonEC2ContainerRegistryReadOnly.

Moreover, to facilitate the role management we will add the tag value INFINITECHBPNode.

At this time, it is possible to create from the same AWS console the worker nodes by clicking on the Compute
tab and by entering these values:

• Name: T3xlarge_16GB4-4vCPU

• Node IAM role name: WorkerRole

• AMI type: Amazon Linux 2 (AL2_x86_64)

• Instance Type: t3a.xlarge(4vCPU/16GB)

• Disk size: 50 GB

• Minimum size: 2

• Maximum size: 3

• Desired size: 2

• Subnets: private-sub01; private-sub02

• Allow remote access to nodes: true

• Allow remote access from: all

At this stage, the Kubernetes cluster is ready to use.

5.2.2 Namespace, Network and Quote policies

As previously described in section 3.5, we have decided to implement the INFINITECH Sandbox concept
leveraging the Kubernetes namespace feature. Therefore, the first step is to create a dedicated Namespace
for each of the INFINITECH target pilots that can be leveraged by each of the owning partners to develop and
test their own pilot applications.

To create the namespace we have defined a Kubernetes YAML template like the following:

kind: Namespace

apiVersion: v1

metadata:

 name: Pilot1

https://console.aws.amazon.com/eks/home#/clusters

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 92

 labels:

 name: Pilot1

The first namespace that has to be created has been named devops, aimed to host all the DevOps tools.

Some of these tools (like Jenkins and Gitlab) need to be exposed on the Internet for convenient access during
the development and testing phases. All the endpoints will be HTTPS based, with free certificates generated
by Let's Encrypt [28], so we do not need to set up a Certification Authority or buy certificates from commercial
CAs.

However, we do need public DNS entries on the project domain, mapped to a public IP that exposes our
services outside of the Kubernetes cluster.

In order to get the public IP, we will use the AWS ELB (Elastic Load Balancer). This is provisioned automatically
when creating a Kubernetes Service with type LoadBalancer. In our case, this happens while configuring the
NGINX Ingress Controller. The NGINX Ingress Controller that will be deployed will have a dedicated
namespace named ingress-nginx.

To implement the network policies to isolate each namespace from each other, and eventually also to
manage the connection between different PODs within the same namespace (i.e. to guarantee the security
requirements), we will implement the Cilium as CNI (Container Network Interface) on EKS.

In order to do that, we will remove the AWS CNI and install the Cilium following these steps:

kubectl -n kube-system delete daemonset aws-node

helm repo add cilium https://helm.cilium.io/

helm install cilium cilium/cilium --version 1.7.9 \

 --namespace kube-system \

 --set global.eni=true \

 --set global.egressMasqueradeInterfaces=eth0 \

 --set global.tunnel=disabled \

 --set global.nodeinit.enabled=true

After the previous step, it is possible to isolate the namespace implementing the following rule (the rules are
written in the YAML format):

apiVersion: "cilium.io/v2"

kind: CiliumNetworkPolicy

metadata:

 name: "isolate-pilot1"

 namespace: pilot1

spec:

 endpointSelector:

 matchLabels:

 {}

 ingress:

 - fromEndpoints:

 - matchLabels:

 {}

Moreover, we will apply the resource quote on memory and CPU that each namespace can consume with
this YAML template:

apiVersion: v1

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 92

kind: ResourceQuota

metadata:

 name: mem-cpu-namespace

spec:

 hard:

 requests.cpu: "800m"

 requests.memory: 2Gi

 limits.cpu: "1"

 limits.memory: 3Gi

After the execution of the previous steps, the Deployment view has been completed, as shown in Figure 14.

Figure 14 – INFINITECH blueprint reference testbed

5.2.3 How to recreate the blueprint testbed for a specific INFINITECH
Pilot

One of the most powerful capabilities and features that are enabled by the technological choice on software
tools and techniques described in the previous sections, is that the blueprint reference testbed created on
AWS can be recreated from scratch, with respect to the Deployment view perspective, by each of the
partners for their own pilots in two possible ways (see Figure 15):

I. On the same AWS cloud provider
II. In a bare metal environment, leveraging their on-premise private data centre infrastructure or the

shared NOVA’s Data Centre.

The two ways are a little bit different from each other, because:

I. In the first case, the recreation of a blueprint environment can be done in a fully automated way
using the Terraform tool. Terraform uses HCL (HashiCorp Configuration Language) to describe the
infrastructure that it is going to implement on the public/private cloud or on a bare-metal
environment, starting from this language it generates a plan file in which are described all steps that
are required to reach the final desired state and it follows this plan to provision the infrastructure.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 92

Its strength is linked to the advantages deriving from the use of the IaC (Infrastructure as Code)
approach so:

• Rapidity: Using a code to create infrastructure is quicker than creating it through the
graphical interface because it is not necessary to go through different pages to create the
specific resources, instead, all infrastructure is described with one file.

• Reliability: Using a code instead of manually creating reduces the likelihood of error

• Scalability: IaC makes it possible to describe the infrastructure only once and replicate it as
many times as you want.

In the second case, it is possible to recreate the cluster in a partially automated way, because in this
case a mandatory prerequisite is manually preparing the entire infrastructure like storages, servers
and network that will accommodate the Infinitech’s components, after that when it will be ready it
will be possible to deploy the blueprint environment using Rancher tools.
Regarding NOVA testbed, the physical infrastructure has been virtualized using VMware's vSphere
hypervisor.
Three VMs have been created on this infrastructure on which the Rancher software has been
installed. Using this software made it possible to recreate a copy of the blueprint environment for
pilot 2, pilot 11, pilot 12, pilot 13 and pilot 14, in an easy and fast way through the user interface.
In addition, the centralized infrastructure monitoring as well as the possibility of implementing RBAC
functionality has greatly facilitated the administration of the platform.

Figure 15 – Blueprint environment recreation ways

Nevertheless, one of the major objectives of having provided a blueprint reference testbed is exactly the
powerful concept explained above: a potentially easy and straightforward replication of it for all the
INFINITECH target pilots’ environments.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 92

6 Blueprint guidelines for the “INFINITECH way”
deployments of project pilots and technologies
This chapter provides guidelines for the partners of the “INFINITECH way” on how to organize their artefacts

in the project’s code repository, and make use of the CI/CD pipelines to i) make their solutions available to

other partners and ii) automate the deployment of a pilot.

It makes use of an imagined pilot solution that has been implemented to validate the process and can be

used as a reference for other pilots to help them build their solutions. This reference pilot makes use of two

INFINITECH building blocks, the Infinistore and the lx-kafka, and a micro-service that has been implemented

specifically for the needs of that pilot. In this document, we will see how we organize the code and artefacts:

platform building blocks, which are artefacts provided by INFINITECH, must go under the corresponding

groups in order to be available for all pilot solutions, while pilot-specific solutions must go under separate

groups. We provide guidelines on how to create new projects under specific groups, set up the Dockerfile

that instructs the CI process on how to build the image, and how to define the CI process itself, by making

use of a Jenkins file. Finally, at the last step, we provide guidelines on how to make use of the CD process to

define the artefacts that the solution consists of and how to automate the deployments.

The provided information should be used as the “INFINITECH way” guidelines for all partners of the

INFINITECH consortium, whether they are technology providers who implement one or more building blocks

of the INFINITECH platform itself, data analyst who implement AI algorithms and tools or developers and

integrators who work on pilot specific applications.

6.1 Guidelines overview
This section provides some basic information on how to have access to the code repository and how the

artefacts are organized per category. The INFINITECH code repository uses of the GitLab, which can be

accessed by the private Infinitech Gitlab url [29], deployed in AWS. Each authorized user account (previously

properly created for a member of an INFINITECH partner) can click at the aforementioned link, and provide

the credentials in terms of a username and password. The LDAP option has to be selected and then users

must add their credentials, as the following figure shows.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 92

Figure 16 – Gitlab login

After a user login, the available projects belonging to this specific user are shown. In the following example

the user pkranas is allowed to see the following projects:

Figure 17 – List of projects visible to a specific user

In Gitlab various groups has been created where the user should place their projects. First, each user has

their own group to experiment and upload a code for internal experimentation, testing purposes or whatever

reason. Apart from that, there are 2+1 categories of groups: groups that include projects that implement a

building block of the INFINITECH platform and are of general purpose, and pilot-specific groups that shall

contain projects that implement a functionality/building block that is specific to the pilot. Last but not least,

there is the Blueprint group, which contains the projects that build the integrated solution of each pilot.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 45 of 92

Groups that contain INFINITECH’s building blocks, have been categorized based on the Reference

Architecture of INFINITECH itself. These must be generic and must be re-used by different pilots or other

potential customers in the future. As a result, these types of groups must not contain any pilot-specific

information. All components in this category of groups must be confidential. This means that they must only

be available to all partners of the consortium. The groups are as follow:

● Data-management: This group contains the component building blocks related with all data

management functionalities of the platform. They include the data ingestion building block, the data

repository of the platform (for example Infinistore) etc.

● Analytics: This group is designed to contain all projects that implement an AI algorithm and are

related to the work that has been carried out under the scope of T5.4. Analytics groups must be

available to all partners of the consortium. The artefacts produced by these projects can be reused

by one or many pilot solutions.

● Blockchain: This group contains all projects that implement a building block that is related with the

Blockchain technology.

● Datasemantics: This group contains all projects that are part of the Semantic Interoperability

Framework of INFINITECH.

● Securityprivacy: Here lives all building blocks that implements functionalities related with the

security and privacy aspects of the platform. It includes anonymization algorithms/tools, data

regulatory constraints solutions etc.

● Presentation: This group contains projects that provide general purpose UI functionalities including

some user interfaces and visualization graphs that can be reused by pilots to show the results of

analytical tools. It is important to highlight that this group does not include front-end

implementations that are specific to the pilots, rather than implementations that are generic and can

be reused by each pilot.

● Interface: This group includes projects which implements functionalities which allows the

connectivity of tools/services external to the platform of INFINITECH itself. The gateway,

Kafka/RabbitMQ queues provided by INFINITECH also belong to this group.

Apart from the INFINITECH category of groups, there is also the PILOT category which contain Pilot1, Pilot2,

Pilot15 groups, each one of those is related to the specific pilot of the project. For instance, let’s suppose

work on group PilotX, where X is the number of the INFINITECH Project Pilot, here’s where all projects that

are specific to a pilotX will be placed. AI algorithms that are private and must be only used by the PilotX, any

backend specific functionality implemented as a service, front-end tools that are also specific for the PilotX’s

solution and so on can be placed here. These projects cannot be shared among other pilots, as they

implement a specific functionality and they are not of general purpose. In this guideline, an imaginary pilot,

called Pilot-Ref, will be used to demonstrate the use of the CI/CD pipelines. This pilot can be used as a

reference for all others. For the pilots of INFINITECH, groups called Pilot1, Pilot2 etc for pilot1, pilot2 etc are

expected as per our naming convention.

Finally, there is a group Blueprint, which has a list of projects. Each pilot has its corresponding project. This

includes the manifest files that define which artifacts consist of a pilot solution and how they are

interconnected. They use confidentially-available projects from the general-purpose groups and the pilot’s

specific projects. For the imaginary Pilot-Ref, there is a Pilot-Ref project under this group to be used as an

example in this guideline.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 92

The following sample diagram (Figure 18) shows the organization under the groups which consist within the

INFINITECH platform. The orange block shows the category, the grey blocks the group and the green the

project itself, as they appear in Gitlab.

Figure 18 – The INFINITECH groups

The following diagram shows the organization under the pilot groups:

Figure 19 – The Pilot groups

It is important to underline that projects under different pilots may have the same name. However, as they

belong to different groups (i.e. pilot1/frontend and pilot2/frontend), this is allowed. Moreover, if there are

microservices or AI tools, pilot-specific must be placed under pilot group. Therefore, the pilot3/aitool_1 has

been developed only for the purposes of Pilot3 and its visibility is private. This means that this cannot be

reused by other pilots nor can it be discovered by the marketplace and be further exploitable by other parties.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 47 of 92

Finally, the next figure (Figure 20) shows the projects under the group Blueprint.

Figure 20 – Projects under the Blueprint group

The difference between the pilots in the last two figures (Figures 19 and 20) is that Pilot1, Pilot2,…Pilot15 of

Figure 19 are groups that contains other projects, while Pilot1, Pilot2,…Pilot15 of Figure 20 are projects

themselves, which are located under the blueprint/PilotX where X is the specific pilot number. In the latter

case, these projects include all information regarding the deployment of the integrated solution of a specific

Pilot, while the former is the group that contains projects (building blocks and AI tools) for this specific pilot.

More details will be given in the following sections.

The following sections will provide information on how to deploy and make use of different types of software

artifacts and how to deploy a pilot solution under the AWS infrastructure using the CI/CD pipelines.

6.2 Building an INFINITECH component
This section provides information on how to deploy a component that is either a platform component or an

AI tool that can be reused by more than one pilot scenario. It is important to underline that all these artifacts

must be containerized and enable the build of a docker image. The section describes in detail the procedure

to deploy the Infinistore component of INFINITECH, which is part of the data-management group. In this

specific case the user must refer to the Gitlab Group data-management [30] while in case of an AI tool the

group analytics must be used [31]. To create a new project under the analytics group, the user can use the

New Project button (see Figure 21).

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 48 of 92

Figure 21 – Gitlab create a new project

When creating a new project, it is necessary to provide some information, so filling in the appropriate fields.
In the example in Figure 22, the group name is data-management and the project name is Infinistore. It is
important to make sure that the visibility level is set to internal, in case it is necessary to allow others to edit.
After filling in this basic information and clicking on create project button, an empty project will be created
with the given name.

Figure 22 – Gitlab setting new project details

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 92

Once the project is created, members that can have access to it will be added. It is very important to ensure

that the user gitlabinfinitech can have access as a maintainer of the project, to allow the CI pipelines to be

executed as depicted in the following picture.

Figure 23 – Giltab add gitlabinfinitech user to access the new project

The user can now clone the project in his/her own dev local machine and upload any code required. The

shortest way to clone a project is using the command git clone followed by the url suggested by Gitlab itself

as depicted in the following figure:

Figure 24 – Git clone an existing project

Cloning the project allows the user to work in his/her local dev environment and to pull all the project source

code needed to create the binaries that will be further used to create the docker image. There might be

several possibilities here: either to upload the source code which must be compiled during the building

process or to provide pre-compiled binaries. In the latter case, the binaries must be reachable during the

creation of the Docker image in Gitlab. The suggested manner is to either build a base image locally that will

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 50 of 92

be pushed to the project’s docker Harbour, or make use of the Infinitech package repository, so that the

binaries can be accessible. More information regarding those two methods will be provided at section 6.2.

Finally, in case a project belongs to a pilot group and is private to the organization, this can be kept on the

premise of the organization.

In either of these options, a Dockerfile must be provided, it defines the instructions for the CI pipeline to

build the image, along with the Jenkinsfile that provides instructions for the CI pipeline itself. The Dockerfile

is unique to each artefact, as it provides artefact specific instructions to build the image. An example for the

data-layer component can be found here [32]. Regarding the Jenkinsfile, there is a template provided by HPE

that should be used by the providers of the components. Users can simply copy the Jenkinsfile already

available in one of the other projects (i.e. the Infinistore) and apply some minor but very important

modifications. The following figure points out the most important Jenkinsfile information that could be to be

customized for a specific project.

Figure 25 – Defining the Jenkins file

In the red circle of Figure 25 there is the name of the image that will be created by the CI pipeline. It is

important to ensure that the name of the project is the same as the group that this artefact belongs to (i.e.

in the previous picture this is called data-management) while the name of the image should be the same as

of the current project (i.e. in the previous picture this is called Infinistore).

Once these are defined, the user must communicate with the HPE team using the slack channel to set up the

corresponding webhooks that will be triggered each time a push event occurs to the Gitlab project to create

a new image and store it under the INFINITECH’s docker registry (Harbor), so that it can be available for all

pilots. Once the webhook is created, it is possible to check it by clicking in the corresponding tab, as Figure

26 indicates.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 51 of 92

Figure 26 – Checking the webhooks of the project

Once clicked, it is possible to check that the webhook has been configured correctly; by default, the webhook

is triggered when a push event takes place on the master branch. In case the developer makes use of other

branches that are being merged to the master, the webhook can be triggered manually, as Figure 27

indicates.

Figure 27 – Manually trigger a CI pipeline

It is useful to check the status and the logs of a pipeline, by going to the specific tab, as shown in Figure 28.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 52 of 92

Figure 28 – Checking the status of a CI pipeline

Figure 28 shows that the latest pipeline was passed, whose trigger was the gitlabinfinitech user. This is the

reason why it is very important to grant access to this user to your project. Clicking the corresponding #29

(the latest) pipeline, it is possible to see the different steps in the pipeline itself. In this Jenkinsfile only the

build process is defined. Details are shown in Figure 29.

Figure 29 – Specific pipeline details

To have more details it is also possible to see the pipeline inside Jenkins simply by clicking on the build: Gitlab

will redirect the user to the appropriate Jenkins pipeline. After providing the user’s corresponding credentials

to Jenkins (which are the same as for the Gitlab), it is also possible to click on the console output and check

the logs to identify reasons for possible failures or other statistics needed (Figure 30).

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 53 of 92

Figure 30 – Checking the logs of a CI pipeline

If the user has managed to successfully build the image using the CI pipeline, the software artifacts have

successfully built and added in the project’s docker registry. Now it is available and can be used by pilot

developers who are building their solutions based on the INFINITECH’s building blocks. It is important to

highlight at this point that all artefacts hosted by these INFINITECH groups must be of general purpose and

not bind to a specific pilot. As they must be used by different solutions, there might be a need for a specific

instantiation of the component, once it has been deployed. For instance, the Infinistore might need to be

instantiated with a predefined data schema. That means, there might be the need to automatically create

the data tables and structures that will be used for storing the data, once the component is up and running.

In that sense, the platform and analytic providers can allow the use of configuration files that will be taken

into account when the component is starting. More details on those scenarios can be found in the section

related with the continuous deployment (CD) and the corresponding pipelines.

6.3 Building an image using pre-compiled libraries/binaries
An image can be built upon the source code. The CI pipeline compiles the code and builds the image using

the compiled binaries. However, in many cases, the source code is private and cannot be uploaded to the

internal repository of the project due to IPR rights. Or in other cases, the developer does not own the whole

source code and makes use of open source libraries that are available to the community. In both cases, the

image is built based on pre-compiled libraries or binaries in general. As it is not good practice to upload such

files to Git, where only source code and script files should be contained, there are two alternatives for such

cases: either to use an already built image as a base, or to make use of the infinitech’s package repository.

The following subsections give more details on these.

6.3.1 Building an image using pre-compiled libraries/binaries

The easiest way to handle scenarios where there is the need to build an image using binaries, is to firstly

create a base image. In this section the Infinistore project will be used as an example. This project consists of

the files shown in Figure 31.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 54 of 92

Figure 31 – Infinistore project files

The tgz file is a binary which contains the datastore of INFINITECH. This cannot be uploaded to Git. Instead,

the user must build a base image locally. To do so, it is necessary to firstly login to the docker harbor, build

the image locally giving a corresponding name, and then push the image to the harbor:

docker login harbor.infinitech-h2020.eu

docker build -t harbor.infinitech-h2020.eu/data-management/infinistore:base .

docker push harbor.infinitech-h2020.eu/data-management/infinistore:basevail

In this example the group is data-management, the image is called Infinistore and it is tagged with the base

attribute, to distinguish it from the latest that will be created by the pipeline. Having pushed the base image

to the Infinitech Harbor, now it can be retrievable from Gitlab. It is necessary however to create the project

under the corresponding group and setup the CI pipelines there using Jenkins and a Dockerfile to build the

image. This is a necessity, otherwise the component developed cannot be retrievable by others, nor by the

marketplace. The dockerfile inside the Infinistore project now can be as simple as the following:

FROM infinistore:base

MAINTAINER Pavlos Kranas <pavlos@leanxcale.com>

WORKDIR ${BASEDIR}

CMD cd ${BASEDIR} \

 && ./start.sh

This will make use of the pre-built base image, and only defines the command to execute when the container

is created. This approach has the benefit that it is simple enough and straightforward. It comes, however,

with the drawback that the image must be maintained by the user locally, and the user cannot benefit from

a versioning repository such as the Gitlab. In fact, in this way the developer is versioning the whole application

container on the Harbour repository and the document changes done in the current release can be

documented using a release file. Moreover, developers can test in their own environment the container

before deploying the blueprint solution. The next approach, explained in section 6.3.2, removes this

drawback, even if it requires some configuration steps beforehand.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 55 of 92

6.3.2 Building an image using a package container

A package container has been deployed in Gitlab, which allows us to store libraries and binary files. It is a

maven [33] artifactory. Usually, maven artifactories are used to store Java libraries that can be shared among

different projects. The developer configures maven projects defining the corresponding dependencies, and

the maven software management tool downloads the corresponding jar files from various artifactories. The

developer, after compiling the code, can deploy the produced java archive into his own artifactory and make

it available to other projects. This is a well-known procedure/practice for java developers, so no more details

will be given on this specific process. However, the maven artifactory can be used to upload whichever type

of files. We make use of this, to upload the tgz file used in the previous scenario, taking as example the

Infinistore project.

In order to make use of the maven artifactory, a personal access token [34] is required. This is an

alphanumeric that grants access to the artifactory. It is assumed that the user is familiar with, and has already

installed, maven in his local machine. Once the token has been created, it is necessary to configure Maven

to make use of it by editing the settings.xml file. This is located in different places according to the OS, but

the most common are ~/.m2 and /usr/share/maven/conf. To proceed, the following lines should be added

to the server section of this file:

<server>

 <id>gitlab-maven-infinitech</id>

 <configuration>

 <httpHeaders>

 <property>

 <name>Private-Token</name>

 <value>XXXXXXXX</value>

 </property>

 </httpHeaders>

 </configuration>

</server>

<server>

 <id>gitlab-maven-infinitech-dist</id>

 <configuration>

 <httpHeaders>

 <property>

 <name>Private-Token</name>

 <value>XXXXXXXX</value>

 </property>

 </httpHeaders>

 </configuration>

</server>

Then, a new maven project should be created to upload the project binaries to the artifactory. The binaries

should be placed under this project, so it should look like shown in Figure 32.

Figure 32 – Maven project files

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 56 of 92

The pom.xml in Figure 32 must be edited to define the repository where files will be stored, it is possible to

make use of a maven plugin to do this job automatically. The pom should look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-

4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>eu.infinitech</groupId>

 <artifactId>infinistore-bins</artifactId>

 <version>1.6.6-SNAPSHOT</version>

 <packaging>pom</packaging>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 </properties>

 <repositories>

 <repository>

 <id>gitlab-maven-infinitech</id>

 <url>https://gitlab.infinitech-h2020.eu/api/v4/packages/maven</url>

 </repository>

 </repositories>

 <distributionManagement>

 <repository>

 <id>gitlab-maven-infinitech-dist</id>

 <url>https://gitlab.infinitech-h2020.eu/api/v4/projects/33/packages/maven</url>

 </repository>

 <snapshotRepository>

 <id>gitlab-maven-infinitech-dist</id>

 <url>https://gitlab.infinitech-h2020.eu/api/v4/projects/33/packages/maven</url>

 </snapshotRepository>

 </distributionManagement>

 <build>

 <plugins>

 <!--this plugin deploys binary files to the artifactory-->

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>build-helper-maven-plugin</artifactId>

 <version>1.10</version>

 <executions>

 <execution>

 <id>attach-artifacts</id>

 <phase>package</phase>

 <goals>

 <goal>attach-artifact</goal>

 </goals>

 <configuration>

 <artifacts>

 <artifact>

 <file>LeanXcale_1.6.6-SNAPSHOT_latest.tgz</file>

 <type>tgz</type>

 </artifact>

 </artifacts>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 57 of 92

It is important to point out that the id of the repository in this file must match one of the ones previously

declared in the file settings.xml. When it tries to connect there, it will make use of the private token created

in a previous step. Another thing that is important to notice is the url of the distribution management section:

https://gitlab.infinitech-h2020.eu/api/v4/projects/33/packages/maven Here, the number 33 corresponds

to the id of the project that uses this binary. In this case, it is 33 as depicted in the Figure 33. Moreover, the

build-helper-maven-plugin was used, and the name of the file to upload and its type were defined. In case

there are several binary files, it is possible to define several artifacts under the artifacts element.

Figure 33 – Project ID

Once the file pom.xml has been edited, it is possible to pull the binaries to the artifactory. The command to

realize this action is “mvn clean deploy”. The result should look as shown in Figure 34.

Figure 34 – mvn command output

Pay attention to the url that the tgz file has uploaded; it will be used soon. Now that the binary is available

through the artifactory, it is possible to copy it from there, instead of from the Gitlab. Now the Gitlab contains

the files depicted in Figure 35, where there is no binary included.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 58 of 92

Figure 35 – Gitlab project files

The Dockerfile inside the infinitech project must copy these files and make use of the url shown in the result

of the maven execution to copy the binaries from the artifactory. A code snippet of the Dockerfile looks like

the following:

FROM ubuntu:18.04

MAINTAINER Pavlos Kranas <pavlos@leanxale.com>

#Add prerequisitites (i.e python, java, libraries etc)

RUN apt-get update && apt-get -y install software-properties-common \

 && add-apt-repository -y ppa:webupd8team/java \

 && add-apt-repository -y ppa:openjdk-r/ppa \

 && apt-get update \

 && apt-get -y install screen iputils-ping netcat vim vsftpd net-tools python3 python3-dev \

 python3-pip libssl-dev silversearcher-ag bc libc6-dbg gdb openssh-server lsof psmisc \

binutils virtualenv telnet apt-transport-https openjdk-8-jdk iproute2 curl gcc python-dev git \

 && mkdir /var/run/sshd \

 && rm -rf /var/lib/apt/lists/* \

 && rm -rf /usr/share/doc && rm -rf /usr/share/man \

 && apt-get clean \

 && pip3 install pyjolokia flask pyyaml psutil

#add environment variables for LXS

ENV BASEDIR="/lx" \

#copy the binaries

COPY inventory /tmp/inventory

RUN cd ${BASEDIR} \

 && curl --header 'Private-Token:XXXX' -L -O \

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 59 of 92

 && https://gitlab.infinitech-h2020.eu/api/v4/projects/33/packages/maven/eu/infinitech/infinistore-

bins/1.6.6-SNAPSHOT/infinistore-bins-1.6.6-20210211.095013-2.tgz

.

.

.

The dockerfile above instructs docker on how to build the image: it starts from the base Ubuntu 18.04 image

and then it installs the various prerequisites needed in the runtime. Afterwards, it starts copying files from

the git, and it makes use of the curl command to grab the binaries from the artifactory, using the url it has

got from maven. It is worth noticing that the token created in the beginning is used by the pipeline to grant

access to artifactory.

This second approach gives the user the advantage of using a versioning system such as Gitlab to maintain

the code. In this way all scripts and files related to the offering are put there, except for the precompiled

libraries/binaries. On the other hand, scripts related to the configuration of a component or the way it is

started will most likely change frequently during the development and integration process. Having these files

in Gitlab gives the benefit of versioning them. Therefore, even if this process seems more complicated than

providing a base image, the whole configuration takes place once at the very beginning, and then everything

can be put in place in the package container using the maven tool.

6.3.3 Building a pilot-specific component

This section describes the process on how to deploy components that have been implemented specifically

for a pilot solution. It follows the same approach as section 6.2 with the difference that the project must be

kept on Gitlab, in a separate group.

To demonstrate the process, an imaginary pilot called Pilot-Red will be created, it consists of two INFINITECH

building blocks, the Infinistore and the lx-kafka, and a micro-service that implements a backend functionality

specific for this pilot. The architecture of this solution is shown in Figure 36.

Figure 36 – Overall architecture of the Pilot-Ref solution

In the diagram of Figure 36, the arrows show the data flow. In this imaginary pilot, data comes in the form of

a data stream from an external resource and is being pushed to a kafka queue. From there, the data isy are

being directly ingested into the INFINITECH datastore. Finally, a microservice exposes a REST API for the data

consumer to retrieve data from the datastore. The Infinistore provided by INFINITECH, which is available

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 60 of 92

under the data-management group, and the kafka queue provided also by INFINITECH, which is available

under the interface group, will be used to build the imaginary pilot Pilot-Ref. The microservice is pilot-specific,

and it is available under the pilot-ref/backend project (under the Pilot-Ref group) which means that it has

been implemented specifically for the needs of this imaginary pilot. As a result, the deployed sandbox for

Pilot-Ref will consist of those 3 artifacts. From the diagram there is clearly a necessity to allow access from

an external source to the deployed sandbox “to put” (so that the data stream can be pushed inside the kafka

queue), and also to allow access from an external source “to get” (so that the REST API can be invoked from

a mobile application). This section will cover all the details of how to solve all these requirements and how

to deploy Pilot-Ref.

As already mentioned before the Infinistore is already available under the data-management group and can

be used by various pilots. Regarding the micro-service of the backend, it exposes a list of REST endpoints that

perform some basic operations over the data management layer: they read data from tables and return the

data in JSON format. The backend functionality has been implemented in Java and makes use of an

embedded Tomcat servlet container, which will deploy the REST web services, along with the swagger that

documents the exposed functionality.

In this group, just the the pilot-specific backend should be provided, as all other components are already

available by the INFINITECH itself. A Dockerfile will provide instructions on how to build the image of the

backend and a Jenkinsfile created for the all projects will be used as template, changing the name of the

target image.

Following the guidelines presented in the previous sections, a new group called Pilot-Ref will be created, it

will host all projects that are specific to this pilot. It is possible to create a new group by visiting this Gitlab

explore group url [35] (see Figure 37)

Figure 37 – Gitlab list of available groups

After naming the project as Pilot-Ref it is important to change the visibility to internal, in this way it is possible

to allow access to some partners from the consortium. The newly created group can be accessed by clicking

the following url [36]. For the real pilots of the project, the name should be Pilot1, Pilot2 etc, while the url

should be changed accordingly.

Now that a specific group for the imaginary Pilot-Ref has been created, it is time to add the pilot-specific

projects under this group. For each of the components, a new git project must be created. The imaginary

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 61 of 92

pilot Pilot-Ref has only one component called backend. The process to follow is the same as for the other

projects. The only thing that changes is that the projects should be placed under the pilot-ref group, this is

shown in Figure 38.

Figure 38 – Creating the pilot-specific backend project

Clicking on this project, it is possible to see its details. Once again, it is very important to add the

gitlabinfinitech user in the members of this group with the role maintainer, as depicted in Figure 39. This will

allow the execution of the CI pipelines.

Figure 39 – Gitlab Project users and roles

In Figure 40 it is assumed that a git clone of the empty project has been already performed and all the files

have been already pushed under the master branch: the figure shows how the project looks like now.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 62 of 92

Figure 40 – Our pilot-ref/backend project

The Dockerfile’s instructions are as follows:

FROM ubuntu:18.04

MAINTAINER Pavlos Kranas <pavlos@leanxale.com>

ENV BACKEND_HOME="/lx"

ENV BACKEND_DIST="/lx_dist"

RUN apt-get update && apt-get -y install software-properties-common \

 && add-apt-repository -y ppa:webupd8team/java \

 && add-apt-repository -y ppa:openjdk-r/ppa \

 && apt-get update \

 && apt-get -y install screen iputils-ping netcat vim vsftpd net-tools \

 openssh-server virtualenv telnet apt-transport-https openjdk-8-jdk curl \

 && groupadd -r appuser \

 && useradd -d ${BACKEND_HOME} -r -s /bin/false -g appuser appuser \

 && mkdir ${BACKEND_HOME} \

 && mkdir ${BACKEND_DIST} \

 && mkdir /tmp/src/ \

 && mkdir /tmp/src/main/ \

 && mkdir /tmp/src/main/webapp

RUN curl --header 'Private-Token:XXXX' -L -O \

 https://gitlab.infinitech-h2020.eu/api/v4/projects/54/packages/maven/eu/infinitech/infinistore-

bins/0.1-SNAPSHOT/pilot-ref-backend-0.1-SNAPSHOT-shaded.jar

RUN curl --header 'Private-Token:XXXX' -L -O \

 https://gitlab.infinitech-h2020.eu/api/v4/projects/54/packages/maven/eu/infinitech/infinistore-

bins/0.1-SNAPSHOT/webapp.tgz

RUN tar vfzx webapp.tgz

RUN chown -R appuser:appuser ${BACKEND_HOME}

EXPOSE 22 23 54735

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 63 of 92

WORKDIR /tmp

CMD cd /tmp \

 && java -jar pilot-ref-backend-0.1-SNAPSHOT-shaded.jar

Similarly, instead of creating the Jenkinsfile from scratch, it is convenient to use a Jenkinsfile defined in other

projects and modify just the corresponding names as shown in Figure 41.

Figure 41 – Setting Jenkins for our pilot-ref/backend project

As shown in Figure 41 the name of the image is backend which is under the pilot-ref project. By setting both

the name and the project, it is impossible to have name conflicts between components that share the same

name (i.e. backend) but belong to different pilot solutions, which means in different groups as well.

Once the user has defined everything, it is necessary to communicate, via slack channel, to the HPE team

that is responsible for setting up and configuring the webhooks that will be triggered to automatically build

the image and make it available when something is being pushed to the master branch. The procedure is the

same as for the artefacts that belong to the INFINITECH groups. Figure 42 shows a pipeline that has been

passed.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 64 of 92

Figure 42 – Checking the CI pipeline for our pilot project

Clicking on the #24 pipeline, it is possible to see the logs of its execution, after being redirected to the Jenkins

page (see Figure 43).

Figure 43 – Checking the logs of the CI pipeline of our pilot project

Once the pipeline has been passed, the artefact is pushed into the project’s docker registry and can be used

in the deployment.

Now that all pieces are in place, it is time to proceed to the following section that will demonstrate how to

deploy the imaginary pilot solution using the CD tools and the artefacts already provided.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 65 of 92

6.4 Deploy a pilot use case in a Sandbox
This section will introduce the continuous deployment process and will provide the guidelines on how to

define the manifest files that describe the deployment of a pilot solution.

As mentioned in the previous sections 3.4 and 3.5, the overall pilot integrated solution might consist of

several use cases that need to be deployed in the testbed inside a sandbox. Compliant with the INFINITECH

terminology, a sandbox reflects whatever is inside a Kubernetes namespace and refers to a specific use case.

As a fact, an integrated pilot solution might consist of several use cases, and therefore several sandboxes.

In the following, the imaginary pilot Pilot-Ref used in the previous sections, (which corresponds to a single

use case) will be deployed inside a sandbox. This sandbox will consist of the Infinistore and the lx-kafka queue,

which are core INFINITECH building blocks, available for all pilots under the corresponding INFINITECH

groups, and a backend micro-service, that has been implemented specifically for the imaginary pilot, which

provides pilot-specific backend functionalities. Another pilot solution might be more complicated, making

use of the data-layer of INFINITECH, its semantic interoperability framework, functionalities that enable the

use of Blockchain, the data ingestion artefact and a set of data regulatory tools, all provided by INFINITECH,

whose components will be stored under the INFINITECH group. Moreover, the pilot might make use of 2-3

AI tools implemented in the scope of INFINITECH and provided under the analytics group, while also relying

on one key AI implementation that is specific to this pilot, 2 pilot-specific micro-services and a front-end UI

tool. The AI tool implemented specifically for the pilot, along with the 2 micro-services and the UI code must

be placed under the PilotX group.

In order to define the CD pipelines, the blueprint group should be used [37]. If the user has not been granted

access to this group, it is sufficient to ask the HPE team using the cicd resources slack channel. Once the

access is granted, the first thing to do is to create the corresponding project for the Pilot-Ref deployment.

The process for creating this project is the same as in the previous sections (click on the new project button

and create a new project). The user needs to ensure that it will grant access to the gitlabinfinitech user that

will allow the CD pipelines to be executed. Once the project has been created, the user needs now to define

the manifest files for the deployment.

It is important to highlight here that the pilot projects under the blueprint group must not contain any code

or other building blocks. The artefacts for all building blocks must be defined in the corresponding INFINITECH

and pilot groups, where the images can be built. The blueprint group is the place where the manifest files is

placed, along with any configuration files that must be injected into the running containers to instantiate the

deployment of each of the building blocks according to the needs of the pilot. Therefore, the deployment

directives must be defined and loaded on such build projects by using Kubernetes manifest files. If the

developers/integrators are unable to write a Kubernetes manifest, they can still create a temporal docker-

compose file and share it with the HPE team, so that they can be aware of the architecture of the overall

solution and produce the relevant Kubernetes files on the behalf of the pilots. These descriptors must contain

detail about:

- Constraints on resource: cpu and memory required and limits
- Storage: needs for persistent volumes
- Network requirements: connection with outside networks, load balancer, other specific

An additional Readme document must be also completed by the developer, and it will contain a general

description of the use case it deploys and other information that must be taken into account during the

deployment.

For the imaginary pilot, the docker-compose could be the following:

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 66 of 92

version: '3.1'

services:

 infinistore:

 image: harbor.infinitech-h2020.eu/data-management/infinistore:latest

 container_name: infinistore

 restart: unless-stopped

 mem_limit: 8g

 mem_reservation: 4g

 cpus: 2

 ports:

 - 2181:2181

 - 1529:1529

 - 9876:9876

 - 9992:9992

 - 14400:14400 backend:

 image: harbor.infinitech-h2020.eu/pilot-ref/backend:latest

 container_name: backend

 restart: unless-stopped

 mem_limit: 512m

 mem_reservation: 128m

 cpus: 0.5

 ports:

 - 54735:54735

 depends_on:

 - infinistore

 links:

 - infinistore

 environment:

 - DATASTORE_HOST=infinistore

 - USEIP=yes

 lx-kafka:

 image: harbor.infinitech-h2020.eu/interface/lx-kafka:latest

 container_name: lx-kafka

 restart: unless-stopped

 mem_limit: 2g

 mem_reservation: 1g

 cpus: 1

 ports:

 - 8081:8081

 - 9092:9092

 depends_on:

 - infinistore

 links:

 - infinistore

In the above code snippet three services are defined: the Infinistore and lx-kafka, along with the backend

that makes use of the Infinistore. The image attribute defines the image name that each of the services will

make use of. It must match one of the available images in the docker Harbour, as defined in the Jenkinsfile

in the CI pipelines. It is also necessary to provide the resource requirements in the Readme file, so that they

can be taken into account and included in the generated Kubernetes manifests.

It must be highlighted at this point that there might be a need for some pilots not to put their pilot-specific

images in the common Harbour used in the project due to IPR rights or other constraints. This is also feasible

and in this scenario, the image source of the corresponding service will point to the docker registry of the

pilot, which is private to it. This means that the backend component will point to an internal registry. As a

result, the pilot is deployed in the common infrastructure, the deployment orchestrator will grab the images

for Infinistore and lx-kafka, but it will fail to get the image for the backend, as it has no access. However, if

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 67 of 92

the deployment is triggered in an infrastructure installed in the premise of the pilot, then the deployment

orchestrator will grab the Infinistore and lx-kafka ones, and it will also be granted access to the pilot-specific

ones. As a result, the process will succeed and the deployment can only take place inside the organization. It

is worth noting that for the solutions that cannot be deployed in the common infrastructure, there is no need

to provide a Jenkins file for the automated deployment, as it will always fail. The system administrators of

the organization can git clone the relevant pilot blueprint, and manually deploy the solution on their

premises.

Taking into account that both Infinistore and lx-kafka are components of general purpose, they must be

instantiated accordingly during the deployment process. Moreover, each component must reach each other

over the network during the runtime, after the deployment of the sandbox. As this happens dynamically, it

is not possible to know beforehand network addresses etc. So the imaginary pilot has the following

requirements:

1. The backend must connect to the Infinistore using a connection url, but it cannot know in advance

the domain name of the container that hosts the datastore.

2. The lx-kafka must connect to the Infinistore in a similar way, which means that it cannot know its

domain beforehand.

3. The lx-kafka is of general purpose, therefore it cannot know in advance the name of the schema of

the incoming data tuples. This information must be provided during the deployment phase and let

the queue instantiate itself accordingly.

4. There is no such need for the Infinistore, as the schema (in this scenario) will be automatically created

by the corresponding connector of the lx-kafka.

5. As the schema will be created based on the configuration file that is specific for the pilot, the backend

(which has been also implemented for the specific needs of the pilot) is already aware of it.

6. A mobile device must consume the REST services exposed by the backend, but it cannot know the

internal IP of the container.

7. The same goes for the stream of data that needs to push data items into the queue.

8. When connecting to a Kafka queue, the latter returns back to the client the list of its brokers so that

the client can connect to those brokers. To do so, Kafka must be configured to advertise the IP of its

brokers. However, it cannot know the external IP of the sandbox beforehand.

9. An external service in kube’s terminology must be defined that allows access from external sources.

The Kafka must be configured with that domain name.

The following paragraphs show how it is possible to meet all these requirements and configure the solutions

to be portable and deployed in whichever is the target infrastructure, using Kubernetes.

For 1, it suggested to use an environment variable for the domain name of the Infinistore. For instance, in

the docker-compose file, this is defined in DATASTORE_HOST=infinistore where Infinistore is the service that

hosts the datastore. The value of this variable would have been assigned automatically by the deployment

orchestrator during the deployment time, in case docker-compose is used. To be compliant with Kubernetes,

this environment variable needs to be replaced by the name of the service kind of Kubernetes, that enables

the network connectivity, and the Infinistore domain name must be replaced by the name of this service kind.

For 2 similarly, lx-kafka uses a configuration file to instantiate the instance accordingly. A template of this

file can be shown in the following code snippet.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 68 of 92

name=local-lx-sink

connector.class=com.leanxcale.connector.kafka.LXSinkConnector

tasks.max=1

topics=REF_TOPIC

connection.url=REF_CONNECTION_URL

connection.user=APP

connection.password=APP

connection.database=REF_CONNECTION_DATABASE

auto.create=true

batch.size=500

connection.check.timeout=20

key.converter=io.confluent.connect.avro.AvroConverter

key.converter.schema.registry.url=http://localhost:8081

value.converter=io.confluent.connect.avro.AvroConverter

value.converter.schema.registry.url=http://localhost:8081

sink.connection.mode=kivi

sink.transactional=false

table.name.format=${topic}

pk.mode=record_key

pk.fields=REF_PK_FIELDS

fields.whitelist=REF_FIELDS_WHITELIST

fields.whitelist=trip_duration_secs,start_time,stop_time,start_station_id,start_station_name, \

start_station_latitude,start_station_longitude,end_station_id,end_station_name,

end_station_latitude, \

end_station_longitude,bike_id,user_type,user_birth_year,user_gender

Also the connection.url property makes use of the Infinistore value that need to be replaced with the actual

value of the container of Infinistore that will be resolved during deployment time. In such scenarios,

configmaps provided by the Kubernetes are used to define the runtime parameters. An example can be

shown at the following code snippet:

apiVersion: v1

kind: ConfigMap

metadata:

 name: lx-kafka-config-map

 namespace: pilot-ref

data:

 advertised.url: {name_of_service}

 topics: GTP

 connection.url: kivi:lxis://{name_of_service}:9876

 connection.database: PILOTREF

 pk.fields: id

 fields.whitelist: trip_duration_secs,start_time,stop_time,start_station_id,start_station_name, \

start_station_latitude,start_station_longitude,end_station_id,end_station_name,

end_station_latitude, \

end_station_longitude,bike_id,user_type,user_birth_year,user_gender

During the deployment, the values of the parameters defined in this configmap will be available as

environment variables to the newly-created pod/container. These can be obtained by the software

component. In case the latter relies on such properties files, this information must be provided to the

properties files, before the software process starts. The following script can do this trick.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 69 of 92

sed -i "s/IPOFTHEMACHINE/$(hostname -i)/g" ${KAFKA_HOME}/etc/kafka/server.properties

sed -i "s/IPOFTHEMACHINE/$(hostname -i)/g" ${KAFKA_HOME}/etc/kafka/connect-standalone.properties

sed -i "s/REF_TOPIC/${topics}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties

sed -i "s/REF_CONNECTION_URL/${connection_url}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties

sed -i "s/REF_CONNECTION_DATABASE/${connection_database}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-

sink.properties

sed -i "s/REF_PK_FIELDS/${pk_fields}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties

sed -i "s/REF_FIELDS_WHITELIST/${fields_whitelist}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-

sink.properties

sed -i "s/IP_EXTERNAL_OF_THE_MACHINE/${advertised_url}/g" ${KAFKA_HOME}/etc/kafka/server.properties

echo 'will wait a bit for the datastore to start'

sleep 20

echo 'will start zookeeper'

nohup ${KAFKA_HOME}/bin/zookeeper-server-start ${KAFKA_HOME}/etc/kafka/zookeeper.properties >

nohup_zk.out &

sleep 2

echo 'will start kafka server'

nohup ${KAFKA_HOME}/bin/kafka-server-start ${KAFKA_HOME}/etc/kafka/server.properties >

nohup_kafka_server.out &

sleep 5

echo 'will start schema registry'

nohup ${KAFKA_HOME}/bin/schema-registry-start ${KAFKA_HOME}/etc/schema-registry/schema-

registry.properties > nohup_schema_registry_server.out &

sleep 3

echo 'will start lxs connector'

nohup ${KAFKA_HOME}/bin/connect-standalone ${KAFKA_HOME}/etc/kafka/connect-standalone.properties

${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties > nohup_connect_lx.out &

sleep infinity

This script is defined to be executed via the CMD docker instruction when the container is created. This

container has 4 different java processes that run inside and the processes are configured via properties file.

Before starting the processes, the sed batch command is used to override the properties file, placing the

values of the environment variables passed via the configmap. After replacing the placeholders (i.e. the

REF_TOPIC in this case) with these values (i.e. GTP), the java processes can be safely started in the

background.

For 3, this configuration file will be used again for the key table.name, topics, pk.mode, pk.fields etc that

define the schema, the database name and the name of the queue for the connector to consume the data.

This configuration file is placed inside the container of lx-kafka under the {BASEDIR}/etc/kafka directory, so

that it can be available when the containers start and the corresponding processes start. To fill these

parameters, a new configmap is defined for this component and a script will be executed when the container

is created.

For 6, it is an opportunity to define a service/route that will be bound to the container of the backend that

exposes the REST services. This must map the external port to the internal port that the backend is listening

to.

Finally, for 7, 8 and 9 it is necessary to define an additional service/route. The kafka queue is configured via

a server.properties file. This file is placed in the blueprint/Pilot-Ref project, and a code snippet is as follows:

broker.id=0

listeners=PLAINTEXT://IPOFTHEMACHINE:9092

advertised.listeners=PLAINTEXT://IP_EXTERNAL_OF_THE_MACHINE:9092

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 70 of 92

num.network.threads=3

num.io.threads=8

socket.send.buffer.bytes=102400

From this code snippet, it is clear that two variables need to be resolved during deployment time and cannot

be known in advance, the IPOFTHEMACHINE that will be assigned to the listeners and the

IP_EXTERNAL_OF_THE_MACHINE that will be assigned to the advertised.listeners. It is possible to know the

former when the container is deployed and it can only be set during the starting process. However, it is not

possible to know the latter. Therefore, one way to solve this problem is to define a service/route that will

expose access to external sources, map its port to the internal port 9092 that is advertised internally in the

container of Kafka, and then the IP_EXTERNAL_OF_THE_MACHINE will be replaced with the name of this

service/route, accordingly with the name declared in the configmap shown above. Thankfully, it is possible

to do that before the actual deployment. Finally, this configuration file under the {BASEDIR}/etc/kafka

directory now has the service/route that must be advertised, and it can be available when the container is

started and the corresponding processes are starting.

Section 6.4.1 describes how to deploy the pilot reference solution using Kubernetes.

6.4.1 Preparing the deployment using Kubernetes

After defining the components and their requirements for the overall solution that will be deployed within

the testbed, the Kubernetes manifest files that will guide the orchestration of the deployment must be

provided. In the imaginary pilot, these are the following:

a. StafulSets:

i. Infinistore

ii. Lx-kafka

b. DeploymentConfigs:

i. Backend

c. Services:

i. Infinistore

ii. Lx-kafka

iii. Backend

d. ConfigMaps:

i. Lx-kafka

Infinistore and lx-kafka StatefulSet maintain a state and they additionally need to preserve their internal IPs

in cases that a POD is recreating, so K8s StatefulSet resources are needed. The backend is a stateless

microservice, so a DeploymentConfig can fits its purposes. Three services are defined to allow the internal

network communication between the components and a ConfigMap that holds the parameters needed to

configure lx-kafka. The project now looks like Figure 44. In the rest of this section a detailed description of

each file is provided.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 71 of 92

Figure 44 – Pilot-ref Gitlab project

Firstly, all these kinds need to be under a Kubernetes Namespace. A general rule is to call the namespace

with the same name as the pilot namespace:pilot-ref, so this sandbox will be called that way. For other pilots,

it should be namespace:pilot1, namespace:pilot2 etc. In a more general way, as a namespace defines a

sandbox and a pilot might have several use cases that need to be deployed in several sandboxes, a deeper

categorization might be needed. In that case, it is suggested to use several deploy projects with related yaml

files and related Jenkins deploy pipelines, each one related to each of the use cases of the pilot.

The first component analyzed is Infinistore. Here’s is how the definition of its stateful set looks like shown in

Figure 45.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 72 of 92

Figure 45 – Infinistore StatefulSet manifest

The arrows in Figure 45 point out the most important elements in this file. Firstly, line 2 defines a StatefulSet,

whose name is defined in line 4 as Infinistore, under the namespace pilot-ref in line 5. Line 23 specifies the

address of the image in the Harbor registry, as defined in the CI process. Line 25 lists the ports exposed by

the container. Line 31 defines a startupProbe which checks periodically if the container is working. As

Kubernetes cannot know the status of the processes inside the container, this command returns with the

status. This is internal to the Infinistore and each component needs to provide its own command for checking

the internal status. This helps Kubernetes to understand if the processes inside the POD/container are down,

which will cause it to restart. A very important element is the definition of the resource in line 40. As these

are defined under the blueprint/pilot-ref project, it means that these are the resources required for the

Infinistore for the deployment of that pilot. Other pilots might need a more intensive data processing, thus

more resources.

After defining the StatefulSet for Infinistore, it is necessary to define its Service, which is the element that will

allow this pod/container to be reachable by network, once deployed. Its definition is as shown in Figure 46.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 73 of 92

Figure 46 – Infinistore Service manifest

Again, line 5 in Figure 46 provides the same namespace, while line 9 provides the list of ports that can be

reachable via this service. Finally, in line 26 there is the component that this service is related to. In this case,

this is the Infinistore, which is the name defined in the corresponding StatefulSet (in its line 4) for the given

namespace. As the IP cannot be known before deployment, other pods/containers that need to connect to

the Infinistore, need to use this domain name. This will be used by both the backend and the lx-kafka

components.

In the following line the backend is described (see Figure 47). As this is a stateless component, a DeployConfig

is used.

Figure 47 – Backend container spec

Here, additionally with the declaration of where to download the image for this container, the ports and the

resources, it is also important to define an environment variable called DATASTORE_HOST, whose value is

infinistore-service. This is the name of the Service created for the Infinistore. That way, when the backend

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 74 of 92

will try to connect to the datastore, it will get the domain name of the latter through this environment

variable, which it will be able to reach through the network. The corresponding Service for the backend is

similar to the one we just have just shown, so it is omitted.

The next component is lx-kafka. TheService definition has no differences from the others, so just the

definition of its StatefulSet is provided. For that component, some parameters are needed during run-time,

and it makes use of a ConfigMap, that holds these values. It can be defined as done in Figure 48.

Figure 48 – lx-kafka-configmap Configmap manifest

In line 6 of Figure 48 there is a list of 6 parameters, in a key/value pair. The Statefulset consumes these values

referencing the configmap entries as done in Figure 49.

Figure 49 – lx-kafka StatefulSet manifest

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 75 of 92

Line 23-34 of Figure 49 define the name of the container, the url to grab the docker image, the ports and

resource requirements as always. From line 35 are defined environment variables retrieved from

ConfigMaps. It is worth noting that the name of the ConfigMap defined in line 4 of Figure 48 is used in the

StatefulSet manifest to retrieve the values: for the variable connection_url, it will search in the ConfigMap

named lx-kafka-configmap and it will grab the corresponding key called connection.url. In the ConfigMap,

this is defined in line 9 (Figure 48). Once the container/POD is up, it is possible to print ${connection_url}

from inside the container and it will respond with infinistore-service. This means that this is an effective way

to pass this parameter during run-time, so that the lx-kafka can connect to the Infinistore using this Service.

However, the configuration of this component is still not finished: Lx-kafka needs to read some properties

file to instantiate itself. So it is necessary to pass this information there and overwrite that file. The properties

file is located under interface/lx-kafka project as depicted in Figure 50.

Figure 50 – Lx-kafka properties file

This properties file has various placeholders where the values defined in the ConfigMap should be set. For

the connection_url parameter discussed above, its definition in the properties file is in line 6 (Figure 50). Here,

it is necessary to replace the REF_CONNECTION_URL with the valid domain name, which in this case is the

infinistore-service. The idea is to replace these values when the container/POD is created before starting the

corresponding processes inside the container/POD. For this purpose a postscript.sh script has been provided

and this is being executed when the container/POD is started. It is depicted in Figure 51.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 76 of 92

Figure 51 – postscript.sh script

In lines 1-2 (Figure 51), 2 parameters in the properties file relying on the hostname of the container/pod are

replaced. Then, in lines 5-10, the value taken from the ConfigMap replace the placeholder of a list of

parameters. For example, looking at line 6, The REF_CONNETION_URL placeholder defined in the properties

file, will be replaced by the value of the connection_url environment variable. This is defined in the StatefulSet

of this component, where this parameter will take the value defined in the referenced ConfigMap, which is

infinistore-service.

The Lx-kafka service and backend service are exposed outside the sandbox using the method described in

section 4.2 point 3.

6.4.2 Deploying using Kubernetes

Having defined the Kubernetes manifest files, it is time to start the deployment pipeline that will create the

containers/PODs of the integration solution of the pilot, into the sandbox. In contrast to the CI pipelines, the

CD pipelines are not triggered automatically. The reason is that the AWS resources are not enough to afford

the deployment of all 15 pilot solutions. Due to this, the deployment will be started manually, for validation

purposes.

Following the same procedure as in the CI part, a Jenkins file needs to be provided. This is different from the

one used in the CI, and the pilot integrators need to communicate with the HPE team to help them with this

definition. The procedure to manually trigger the process follows.

The pilot integrator needs to go to the CI/CD part under blueprint project, and to click in one of the available

pipelines, that will redirect in the Jenkins file. This procedure has been documented in Chapter 2. In the

Jenkins main page of the deployment, a list of stage deployments is shown. To start the deployment it is

sufficient to click on the build now button, as depicted in Figure 52.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 77 of 92

Figure 52 – Jenkins deployment stages

Clicking in one specific build, and then in the Console Output, makes it possible to see the logs from the

building process (see Figure 53).

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 78 of 92

Figure 53 – Jenkins build log

If the build process is successful, Kubernetes resources have been deployed correctly and they could be

managed using the kubectl [38] command line client. A config file must be provided to allow the

authentication required to connect. The HPE colleagues will circulate such files that usually need to be placed

under the ~/.kube. Some examples of how to use the kubectl command follow:

./kubectl -n pilot-ref get all

will print all available resources under the pilot-ref namespace, as follows

NAME READY STATUS RESTARTS AGE

pod/backend-6687d79cd6-gk2sm 1/1 Running 0 5h35m

pod/infinistore-0 1/1 Running 0 5h36m

pod/lx-kafka-0 1/1 Running 0 5h36m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

service/backend-service ClusterIP 10.100.38.213 <none> 54735/TCP

5h36m

service/infinistore-service ClusterIP 10.100.220.84 <none>

2181/TCP,1529/TCP,9876/TCP,9992/TCP,14400/TCP 5h36m

service/lx-kafka-service ClusterIP 10.100.217.189 <none> 8081/TCP,9092/TCP

5h36m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/backend 1/1 1 1 5h35m

NAME DESIRED CURRENT READY AGE

replicaset.apps/backend-6687d79cd6 1 1 1 5h35m

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 79 of 92

NAME READY AGE

statefulset.apps/infinistore 1/1 5h36m

statefulset.apps/lx-kafka 1/1 5h36

The snippet above shows that three PODs have been deployed. It is possible to see the logs of lx-kafka for

instance, by issuing the following:

./kubectl -n pilot-ref logs lx-kafka-0

The following command connects to the lx-kafka POD via ssh in order to manually perform some actions.

./kubectl -n pilot-ref exec -it lx-kafka-0 bash

Finally, a resource can be completely removed by issuing the following

./kubectl -n pilot-ref delete statefulset.apps/lx-kafka

Additionally, it might be also useful to define a Jenkins pipeline that can be executed to delete a specific

sandbox, removing all its resources. This will be further investigated with each pilot, to identify how often

the sandbox will be created and how complicated it is to remove it manually.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 80 of 92

7 Implementation of the Blueprint guidelines to
INFINITECH blueprint pilots
This chapter provides the description of the actual and concrete implementation of the “INFINITECH way”

Blueprint guidelines described in the previous chapter, applied to two of the official INFINITECH pilots, the

so-called “INFINITECH blueprint pilots”, namely:

• Pilot #5b: Business Financial Management tools delivering Smart Business Advice, owned by the

partner Bank of Cyprus (BOC);

• Pilot #2: Real-time risk assessment in Investment Banking, owned by partner JRC.

Those two pilots will act as reference and "drive by example" for the future implementation of the guidelines

to (possibly) all the official INFINITECH blueprint pilots (actually 15 pilots at the time of writing), planned for

the next phase of the INFINITECH project.

7.1 Blueprint environment for Pilot #5b: Business Financial
Management tools delivering Smart Business Advice

This section describes the preliminary concrete INFINITECH blueprint environment associated to one of the
official INFINITECH pilots, the Pilot #5b: Business Financial Management (BFM) tools delivering a Smart
Business Advice, owned by partner Bank of Cyprus (BOC), and also set up the basis for the future applications
of the concepts described in Chapter 6 for all the INFINITECH target pilots’ environments.

7.1.1 Pilot Objectives

Most of today’s Financial Management tools for Small Medium Enterprises (SMEs) are geared towards
analysing only past transactions, making such tools inadequate in today's world. Today, SMEs and their
customers alike, demand just-in-time processing, transparency and personalized services to assist SME
owners not only in understanding better their SME business/financial health but also to be able to model
their options and to decide on the next best action to take.

Thus, Pilot 5b aims to assist SME clients of Bank of Cyprus in managing their financial health in the areas of
cash flow management, continuous spending/cost analysis, budgeting, revenue review and VAT provisioning,
all by providing a set of AI-powered Business Financial Management tools and harnessing available data to
generate personalized business insights and recommendations. Machine learning algorithms, predictive
analytics and AI-based interfaces will be utilized to develop a kind of smart virtual advisor with the aim to
minimize SME business analysis effort, to focus on growth opportunities and to optimize cash flows
performance.

7.1.2 Pilot Workflow

The pilot workflow can be presented starting from the datasets that it has to manage. For the data collection
process, tokenized data from designated BoC databases, as well as data from open sources and SME
ERP/Accounting software will be migrated to the data repository of the BoC testbed, following a reverse
pseudonymization technique before returning to BoC premises and be displayed to the SME clients. Some of
the available datasets require real time data collection, while in others historical data collection is sufficient
to provide actionable business insights. In more detail, transaction and account data related to the respective
SME will be drawn from BOC’s repository by a real time/historical data collector as well as transaction and
account data from Open Banking (PSD2), as well as BOC’s customer data, will utilize a historical data collector.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 81 of 92

In addition, an external data collector will be used to integrate other related Open Banking/macroeconomic
data. The SMEs’ data source (e.g. ERP/Accounting system) utilization remains optional as consent is required
for the collection and processing of such data and its cloud availability being required. The involved data
sources involved are summarized in the following list:

• Transaction Data from Open Banking (PSD2).

• Transaction Data from SMEs (optional).

• Other Data (Market).

• Other Data from SMEs (optional).

• Accounts Data from BOC.

• Accounts Data from Open Banking.

• Customer Data from BOC.

• Direct Input from SMEs.

In the target pilot PoC, all data except external macroeconomic data will be pseudonymised (by tokenization)
before being uploaded to the IRA.

The cloud Data Repository (within the IRA) will then store all collected data (along with the generated
insights), past SME financial actions (to measure to what degree an SME’s actions reflect the recommended
insights), as well as the minimum user input that is required. A continuous data streaming will connect the
Data Repository with the various deployed BFM tools (machine learning algorithms), which would allow the
retraining of the respective AI models and the generation of useful insights and recommended actions. A
reverse data pseudonymisation will then be applied before the processed data move to the bank middleware
component that contains composite APIs and produces push notifications, all of which will be offered to the
SMEs via Android, iOS and web applications. Upon SME user login, the IRA is also accessed,
insights/recommendations picked up from the cloud data repository and provided to the SME user.

The pilot’s workflow described is depicted in Figure 54.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 82 of 92

Figure 54 – Pilot #5b workflow

7.1.3 Blueprint reference testbed implementation

Aligned with the blueprint reference testbed (Blueprint_v1) preliminary PoC version (Prototype_v1) of pilot
5b, within the context of this deliverable the second version of blueprint reference testbed (Blueprint_v2)
and PoC version (Prototype_v2) is introduced. Accordingly, the PoC will not use all available components of
the INFINITECH platform, as illustrated in Figure 54, but just a selected subset.

In more detail, the blueprint testbed implementation for pilot #5b is based on the following assumptions:

• The PoC version of the pilot (Prototype_v2) does not fully represent the BFM advisor, since some of
the underlying data analytics services are still under development (i.e. 2 out of 7 analytics services
are integrated till now).

• The pilot does not utilize Blockchain technology, so all the Blockchain-oriented components will not
be integrated.

• Data migrated to the blueprint testbed is owned by BOC and will be pseudonymised (using the
tokenization technique) before entering the INFINITECH ecosystem. There is no need for an
INFINITECH anonymizer for the Prototype_v2 PoC.

• Regarding the Data Management layer, the core component is the Infinistore where both historical
and new data are stored. In this direction, both Kafka queue and zookeeper (provided by INFINITECH)
and JDBC connections are used in terms of data handling.

• Finally, as implemented the components that comprise the logic of the BFM tool are pilot-specific,
but of course following the infinitech way.

Prototype_v2 and Blueprint_v2 versions will include the components listed in Table 2.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 83 of 92

Group Prototype_v1 Blueprint_v1

On-Premise Data source Layer
and Data Management

1) An FTP server will provided
historical data

2) Stream of new transaction
data (under development)

1) A data loader thread within the
transaction-categorization POD

2) A REST api connected to the
Kafka queue

Analytics Layer Cash Flow Prediction,

Transaction Categorization

Cash Flow Prediction ,

Transaction Categorization

Data Security and Privacy - Data Anonymization (by BoC)

Interfaces REST API REST API

Table 2 – Prototype_v2 vs Blueprint_v2 components

The next version of the PoC prototype (Prototype_v3) will include stream processing, and some
complementary components of the Analytics group. Based on the pilot #5b development roadmap,
Prototype_v3 will be hosted on the private AWS cloud of BoC, where all progress will be migrated from the

Project’s reference testbed currently being utilized.

The ML/DL models of the Analytics Components (Cash Flow Prediction, Transaction Categorization) of the
version 2 will be trained offline once a day and saved in the persistent volume provided by the testbed. It is
also noted that the data provided till now are already cleaned so the trivial preprocessing needed, is included
in each component’s pipeline in each specific container. Also in the next version, an incremental way of
updating the ML models will be explored in order not to request the whole dataset for retaining the models.

Transaction-categorization: In this Analytics component both a rule-based and ML-based model were
incorporated in a hybrid model. The main reason for that is that we provide the interaction of the user by
enabling the user to re-categorize a given transaction category. To this end, an ML model is retrained every
day in order to update the new information provided by the users. For retraining the model, the whole
dataset is being retrieved from the Infinistore, this will be optimized in the next version.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 84 of 92

Cashflow-prediction: The second microservice implemented in the Prototype_v2 is the Cash Flow Prediction

Engine, which aims to accurately predict the cash inflows and outflows of the given categories produced by

our hybrid transaction categorization model for each SME. To this end, a probabilistic Deep RNN is used,

applied on each time series (per account per category) as a multivariate time series. Given that the prediction

horizon is extended to 3 months, both resampling and aggregating the amount of the transactions based on

each specific account and date have been applied to our data sample. These, processes were included in the

conainer. The DL model is updated once a day. In the next version online aggregates of Infinistore will replace

this preprocessing step.

Boc-api: Given the aforementioned points, a REST API (boc-api) is developed on top, which delivers realtime

information when invoked. This data is forwarded directly to the Infinistorevia JDBC connecitons, it is likely

in the next version of the Prototype this data could be forwarded to the analytics component if needed.

infinistore: Is the datastore on a persistent volume provided from the INFINITECH.

lx-kafka: Additionally, an interface between the transaction categorisation and Infinistore is developed to

handle the real time data streams ingested in the application from the data provider. As these microservices

need to communicate asynchronously, ensuring high availability and fault-tolerance, the most popular

intermediate is the use of data queues. Apache Kafka is the most dominant when it comes to data items.

Demo_android_app: Within INFINITECH, an android app has been developed in order to consume the
created data from the aforementioned components.

In order to run the pilot inside the blueprint environment, a dedicated sandbox named pilot5b has been
created. The components deployed in such a sandbox are:

• Analytics (transaction-categorisation, cashflow-prediction)..

• A REST API (boc-api).

• Infinistore.

Figure 55 – Prototype_v2 components diagram

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 85 of 92

• lx-kafka.

All the components are packaged following the infintech way as docker container deployed in a Kubernetes
cluster (i.e. AWS EKS) [15]. More specifically, every component is deployed in a POD with specific features
within the cluster. The most important one is the capability of auto-scaling when needed in terms of the
demand. Thus, as a sandbox is defined all the components deployed under the same namespace allow the
interaction and connection between them.

The client connections from the external world towards such a sandbox and all sandboxes deployed in the
blueprint are managed through an API Gateway (GW) (see Figure 2), which is a key component of the IRA
Interface layer.

The process workflow implies that when a user sends a (HTTPS) request it is forwarded by the boc-apito the
Infinistore POD, from there the required data will be retrieved and return to the application in json format
response. The proposed blueprint architecture is illustrated in Figure 56.

Figure 56 – #5b blueprint reference architecture

7.2 Blueprint environment for Pilot #2: Real-time risk assessment in
Investment Banking

This section describes the preliminary concrete INFINITECH blueprint environment associated to one of the
official INFINITECH pilots, the Pilot #2: Real-time risk assessment in Investment Banking, owned by the
partner JRC, and also, like for the previous pilot, setup the basis for the future applications of the concepts
described in the previous section 6 for all the INFINITECH target pilots’ environments.

7.2.1 Pilot Objectives

Risk assessment is of high importance when it comes to trading, investments, and other financial activities,
as poor risk monitoring could lead to inefficient investments, loss of capital and penalties by regulatory
authorities. Thus, robust risk models, capable of yielding real-time results, are valuable assets for investment
banking. Pilot2 introduces a financial tool which is able to provide risk assessment on Forex portfolios in

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 86 of 92

(near) real-time. Financial risk is measured in terms of both Value-at-Risk and the Expected Shortfall, with
the respective models utilizing not only statistical but also deep learning techniques that achieve accurate
results. Moreover, the pilot, based on INFINITECH data management technologies, provides real-time risk
assessments, utilizing the latest market data. These features along with the provided pre-trade analysis make
this solution a valuable tool for practitioners in high frequency trading and investment banking in general.

7.2.2 Pilot Workflow

The pilot workflow could be divided into five distinct layers as they are depicted in Figure 57. Starting with

data sources, there is the infrastructure layer related to the bank side providing the input data which consists

of real time prices, historical prices, trading positions and news in a text form. Then, the input data is injected

to the Infinitech ecosystem through the data management layer, which is able to handle both stream and

batch data. Data processing and analytics layers are responsible for performing all the required data

transformations and calculations in order to predict all the required risk metrics of the input trading positions.

Finally, for the pilot-specific needs an appropriate User Interface has been developed not only to visualize

the risk predictions but also to perform pre-trade analysis leveraging the developed risk models at rest.

Figure 57 – Pilot #2 workflow

It is noted that, as this use case is under continuous development and in order to test the implemented
components, the infrastructure layer is simulated by stream generators. The latter are producing both market
and trades data at the same frequency as the provided datasets. In such a way, it is feasible to simulate the
real-time process and prove that the utilized components are integrated properly.

7.2.3 Blueprint reference testbed implementation

This sub-section describes the mapping of the aforementioned workflow to the actual implementation of

Pilot 2, according to the IRA, to the reference testbed. The current version of the pilot consists of four

components, three (AI for VaR Prediction, Infinistore, Kafka) of which are provided by INFINITECH, while the

remaining one (UI based on VaR) was developed for the pilot-specific needs. These are provided as

containerized microservices leveraging the relevant advantages described in Chapter3. Pilot’s Prototype and

Blueprint include the components listed in Table 3 and are further analyzed in this section.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 87 of 92

GROUP Prototype Blueprint

Analytics AI for VaR Prediction AI for VaR Prediction

Data Management LXS-Datastore Infinistore

Injection LXS-Kafka LXS-Kafka

Interface UI based on VaR UI based on VaR

Table 3 – Prototype vs Blueprint components

The AI for VaR Prediction component, provided by the analytics group with the AI & ML algorithms, reads
every minute the latest aggregated prices and trades data from the Infinistore, in order to predict VaR and
ES. Therefore, every minute it provides updated risk estimations according to the latest market prices.
However, new trading positions are posted with a HTTP request directly to this component and then are
saved to the datastore. As a result, the risk assessments are updated instantly when a new trading position
takes place. The predictions along with the input trades are stored to the Infinistore to be used by the User
Interface.

The second utilized component is the Infinistore from Data Management group. The JRC pilot relies on this
and on its dual interface to firstly being able to ingest operational data at any rate and also to perform
analytical query processing on the live data that have been added. Moreover, the historical data is stored by
this component using the static data injection described is Section 4.1.1. The Infinistore also incorporates the
“Online Aggregates” providing real time data analysis using a declarative way with standard SQL statements.
In this way, the required aggregate operations, such as average price per instrument per minute are defined,
and the result of the execution is pre-calculated on the fly. As a result, it can be retrieved instantly with a GET
operation, enabling the utilization of the latest data.

The next component of Pilot 2 in the LXS-Kafka which is an interface between the data provider (e.g. Bank
API) and the datastore, inside the sandbox, handling the real-time input data. In this use case, the stream of
tick data is automatically pushed into the Infinistore, taking advantage of its dual query interface.

UI based on VaR is the last component of the current version of Pilot 2 being an API interface between the
user and the provided application. On the one hand, UI based on VaR queries every minute the Infinistore in
order to retrieve both the latest VaR/ES prediction and aggregated market data. This is achieved via a JDBC
connection using the components’ internal IP addresses known only inside the sandbox. On the other hand,
the user is able to send HTTP requests to this component inside the sandbox in order to perform pre-trade
analysis.

Each component is deployed as a docker container in an automated manner, using Kubernetes container

orchestration system. In such a way, all software artefacts of the integrated solution are given a common

namespace, and they can interact with each other inside the namespace as a sandbox. The latter consists of

the software artefacts deployed under the given namespace.

A high-level overview of this implementation is illustrated in Figure 58. Each component is running in a POD

which is the simplest unit in the Kubernetes object. A POD encapsulates one container, having its own storage

resources, a unique network IP, access port and options related to how the container should run. This setup

enables the auto-scaling of the underlying services according to the volume of external requests. For

instance, in case of influx of clients (i.e. traders) requiring risk assessment of their portfolios, the

corresponding (red) POD will automatically scale-out as needed.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 88 of 92

Figure 58 – Pilot #2 blueprint reference architecture

Using such a concept, allows for the portability of the sandbox, as it can be deployed in different

infrastructures. Towards this direction, Pilot 2 was initially deployed in INFINITECH blueprint reference

testbed, hosted in AWS and then was successfully migrated from AWS to NOVA testbed which is its target

infrastructure. From the developer's point of view, this process does not require any extra effort and can be

completed in a timely manner, as it is irrelevant to the sandbox in which data center it will be hosted.

It is also noted that, as each pilot’s service is provided as a REST API, additional features (e.g. financial news

sentiment analysis) could be added as separate components to the existing sandbox. This could be easily

achieved by assigning to the new microservice the respective namespace and by following INFINITECH CI/CD

guidelines.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 89 of 92

8 Conclusions
This document has reported the results of INFINITECH WP6 Tasks T6.2 “Mechanisms and Tools for Tailored
Sandboxes Provision and Configuration” and T6.3 “Integrated Management of Testbeds' Datasets”, achieved
during the second and intermediate phase of the project, i.e. the intermediate specification of tools and
techniques that will be leveraged to implement the testbeds and sandboxes concepts and the management
of datasets within the INFINITECH project.

The document is the accompanying textual specification of the other major deliverable result: the second
release of the proposed tools and techniques integrated and deployed into the INFINITECH blueprint
reference testbed setup, designed and implemented upon two of the target INFINITECH infrastructures. The
document and the developed INFINITECH blueprint reference testbed setup constitute the overall
deliverable output.

The achieved results provide key contributions for the fulfilment of the 2nd major WP6 milestone (MS14 –
Second Version of ALL Sandboxes & Testbeds Available – foreseen for M24 of the project).

The work has been carried out in close cooperation and coordination with the other INFINITECH WP6 tasks
and work packages 2-3-4-5 tasks and partners, taking into account and integrating the delivered results and
concepts (e.g. the INFINITECH Reference Architecture proposed by WP2) in a coherent and uniform manner.
Moreover, it has taken into account the preliminary feedback coming from the 1st round of the INFINITECH
work package dedicated to the Large Pilots Operations and Stakeholders’ Evaluation of the proposed
Financial and Insurance Services (WP7), and additionally will be one of the major drivers of the upcoming 2nd
round of such WP7 Pilots.

The WP6 work on Tasks 6.2 and 6.3 will continue without any interruption in the next period of the project,
evolving and enriching the proposed tools and techniques with additional capabilities and features that will
take into account the latest evolutions of relevant technologies occurring during the related project
timeframe. Such work will lead to the final release of the deliverable, which will be fully documented in
deliverable D6.6 (Tools and Techniques for Tailored Sandboxes and Management of Datasets – III), planned
for M32.

Finally, with respect to the specific objectives and KPIs set for WP6 and related tasks in the project DoA, the
Table 4 and 5 summarize how the work done in this deliverable addresses them.

Table 4 – Mapping of DoA/Tasks Objectives with Deliverable achievements

Objectives Comment

OBJECTIVE 6 – TESTBEDS
AND TAILORED
SANDBOXES FOR BIGDATA
& IOT EXPERIMENTATION,
TESTING, INNOVATION
AND STANDARDIZATION
IN FINANCE & INSURANCE

The approach, mechanisms and tools described in D6.5 enable the
definition and deployment of the testbeds and sandboxes
envisioned by the objective.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 90 of 92

Table 5 – Mapping of DoA/Tasks KPIs with Deliverable achievements

KPI Comment

KPI 1 Testbeds to be
Established >= 9 (>=8 in
Incumbent organizations
and >=1 (EU-wide)
testbed for
FinTech/InsuranceTech
firms);

The approach, mechanisms and tools described in D6.5 incorporates
by design the proper scalability features that enable the definition,
deployment and provisioning of the target numbers of testbeds,
sandboxes and datasets envisioned by the KPIs.

KPI 2 Distinct datasets
(assets) to be shared
through the testbeds
>=25;

KPI 3 Tailored Sandboxes
to be developed &
customized based on the
project’s tools >=14 (i.e.
equal to the number of
pilots);

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 91 of 92

9 Appendix A: Literature

[1] [Online]. Available: Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance.

[2] [Online]. Available: Can be left void.

[3] K. Philippe, "“Architectural Blueprints - The “4+1” View Model of Software Architecture”," IEEE
Software, vol. 12, pp. pp. 42-50, November 1995, pp. 42-50.

[4] R. M. M. M. M. A. Irakli Nadareishvili, Microservice Architecture: Aligning Principles, Practices, and
Culture, O'Reilly Media, Inc., 2016.

[5] Google, “Containers,” Google, 2018. [Online]. Available: https://cloud.google.com/containers.

[6] Kubernetes, “What is kubernetes?,” Kubernetes, 5 August 2020. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[7] Docker, “What container,” 2020. [Online]. Available: https://www.docker.com/resources/what-
container.

[8] AWS, “What is aws,” Amazon, 2020. [Online]. Available: https://aws.amazon.com/it/what-is-aws/.

[9] Wikipedia, “Bastion Host,” [Online]. Available: https://en.wikipedia.org/wiki/Bastion_host.

[10] HAproxy, “HAproxy,” HAproxy, [Online]. Available: http://www.haproxy.org/#desc.

[11] Hashicorp, “Introduction to Terraform,” Hashicorp, [Online]. Available: terraform.io/intro/index.html.

[12] Rancher, “Rancher overview,” SUSE, [Online]. Available:
https://rancher.com/docs/rancher/v2.5/en/overview/architecture/.

[13] Gartner, “DevOps Gartener Glossary,” Gartner, 2020. [Online]. Available:
https://www.gartner.com/en/information-technology/glossary/devops.

[14] “DevTest and DevOps for microservices,” Microsoft, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-microservice.

[15] AWS, “Amazon EKS,” Amazon, 2020. [Online]. Available: https://aws.amazon.com/eks/?nc1=h_ls.

[16] Git, “Git,” Software Freedom Conservancy, 2020. [Online]. Available: https://git-scm.com/about.

[17] GitLab, “Gitlab docs,” GitLab, 2020. [Online]. Available:
https://docs.gitlab.com/charts/installation/deployment.html.

[18] Jenkins, “Jenkins,” [Online]. Available: https://jenkins.io/.

[19] S. Nexus, “Sonatype Nexus OSS,” [Online]. Available: https://www.sonatype.com/nexus-repository-
oss.

[20] OpenLDAP, “OpenLDAP,” [Online]. Available: https://www.openldap.org/.

[21] HELM, “Quickstart,” HELM, 2020. [Online]. Available: https://helm.sh/docs/intro/quickstart/.

[22] Slack, “Slack features,” Microsoft, [Online]. Available: https://slack.com/intl/en-it/features.

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 92 of 92

[23] D. G. Neil MacDonald, “12 things to get right for successful devsecops,” Gartner, December 2019.
[Online]. Available: https://www.gartner.com/en/documents/3978490/12-things-to-get-right-for-
successful-devsecops.

[24] Sonarqube, “Sonarqube architecture,” SonarSource SA, 2020. [Online]. Available:
https://docs.sonarqube.org/latest/architecture/architecture-integration/.

[25] Google, “MLOps: Continuous delivery and automation pipelines in machine learning,” Google, 2019.
[Online]. Available: https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-
and-automation-pipelines-in-machine-learning.

[26] Kubeflow, “About Kubeflow,” Kubeflow, 2020. [Online]. Available:
https://www.kubeflow.org/docs/about/kubeflow/.

[27] A. W. Service, “Amazon Kubernetes Service,” [Online]. Available:
https://aws.amazon.com/it/quickstart/architecture/amazon-eks/.

[28] L. Encrypt, “Let’s Encrypt,” [Online]. Available: https://letsencrypt.org/.

[29] Infinitech, “Gitlab Infinitech Main Page,” [Online]. Available: https://gitlab.infinitech-h2020.eu/,.

[30] Infinitech, “Gitlab Data Management,” [Online]. Available: https://gitlab.infinitech-h2020.eu/data-
management.

[31] Infinitech, “Gitlab Analytics,” [Online]. Available: https://gitlab.infinitech-h2020.eu/analytics.

[32] Infinitech. [Online]. Available: https://gitlab.infinitech-h2020.eu/data-management/infinistore/-
/blob/master/Dockerfile.

[33] Apache.org, “Maven,” [Online]. Available: https://maven.apache.org/.

[34] Infinitech, “Gitlab Personal Access Token,” [Online]. Available: https://gitlab.infinitech-
h2020.eu/help/user/profile/personal_access_tokens.md.

[35] Infinitech, “Gitlab explore groups,” [Online]. Available: https://gitlab.infinitech-
h2020.eu/explore/groups.

[36] Infinitech, “Pilot Ref on Gitlab,” [Online]. Available: https://gitlab.infinitech-h2020.eu/pilot-ref.

[37] Infinitech, “Gitlab-Infinitech-Blueprint,” [Online]. Available: https://gitlab.infinitech-
h2020.eu/blueprint.

[38] Google, “Kubernetes-Kubectl,” [Online]. Available: https://kubernetes.io/docs/tasks/tools/install-
kubectl/.

[40] Istio, “What is Istio,” Istio, 2020. [Online]. Available: https://istio.io/latest/docs/concepts/what-is-istio/
.

[41] [Online]. Available: https://en.wikipedia.org/wiki/Bastion_host.

