
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D5.2 – Library of Parallelized Incremental

Analytics - II

Revision Number 3.0

Task Reference T5.2

Lead Beneficiary LXS

Responsible Ricardo Jiménez-Peris

Partners LXS, GLA, CTAG

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-05-31

Delivered Date 2021-07-27

Internal Reviewers SILO, UNP

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)4796807 - 27/07/2021

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 27

Contributing Partners
Partner Acronym Role1 Author(s)2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Boyan Kolev

Javier Pereira

Luis Miguel Garcia

Jesús Manuel Gallego

Pavlos Kranas

GLA Contributor Richard McCreadie,

Craig Macdonald,

Iadh Ounis

CTAG Contributor Andrea Becerra

SILO Internal Reviewer

UNP Internal Reviewer João Oliveira

INNOV Quality Assurance Dimitris Drakoulis

Revision History
Version Date Partner(s) Description

0.1 2020-07-13 LXS ToC Version

0.2 2020-07-13 LXS Updates Executive Summary

0.3 2020-07-13 LXS, CTAG Updates introduction

0.4 2020-07-14 LXS Input on section 5

0.5 2020-07-15 LXS, CTAG, GLA Input on section 5 and conclusions

0.6 2020-07-15 LXS Finalize the document

1.0 2020-07-15 LXS Submitted for internal review

1.1 2021-07-16 UNP, SILO Internal Review

2.0 2021-07-26 LXS Fix formatting, Submitted for QA

3.0 2021-07-27 LXS Finalize the document

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 27

Executive Summary
The goal of Task T5.2 “Incremental and Parallel Data Analytics” is on one hand to deliver a set of algorithms
that can be used in the finance and insurance sector and can be considered incremental and be parallelized
in order to improve the overall performance and on the other hand, to provide the enablers for those
algorithms to be executed incrementally. In addition, those algorithms should be used by a data analyst to
extract information as close to real-time as possible. Typical algorithms for these types of scenarios can be
found in the area of frequent pattern mining, time series prediction analysis, collaborative filtering, and
others. Even if they have been widely adopted from applications in the aforementioned sectors, they
usually rely on static data that has been persistently stored in a datastore, and as a result, even if they can
be parallelized, they cannot be considered as incremental.

As the INFINITECH platform provides an innovative data management layer that claims to overcome the
inherited and existed barriers for correlating data at-rest with streaming data, it provides a unified data
framework for integrated query processing on both types of sources. The latter makes use of a streaming
engine that provides additional operators that allows this correlation of data and relies on the basic pillars
of the data management layer of the platform. In the scope of T5.2, firstly we rely on the work that has
been carried out in the corresponding tasks of WP3 that implements that layer, and on the results of T5.3
that provides online aggregations. By exploiting the advancements of those tasks, we are in a position to
re-design popular algorithms used in the finance and insurance sectors, implement them in a distributed
manner so that they can be easily scaled out and serve very high rates.

Another important objective of task T5.2 is to provide incremental analytical processing that can be
exploited by such algorithms of the finance and insurance section. Towards this, the internal storage engine
of the data management layer, the INFINISTORE, has been re-designed in order to provide the enablers of
such type of analytics. This took place during the second phase of task T5.2, as in the first phase, the
storage engine had to be extended to provide support for the online aggregates, the basic pillar of the
technology that is being provided under the scope of T5.3. With the advancements of T5.2 in this second
phase, the storage engine can now propagate data modifications to its upper layers, which are being
consumed by the INFINISTORE’s API. The latter now provides incremental scans, which is the basic
operation for incremental analytics.

This deliverable describes how we take advantage of INFINITECH’s existing tools and frameworks in order
to parallelize time series algorithms for correlation discovery and forecasting, a popular family of
algorithms that are being used in a variety of use cases in the finance sector regarding risk assessment for
stock or retail trading. Our library can be executed in parallel and the results are being returned
incrementally. Moreover, it describes how the incremental scans can be used in practice by such algorithms
or can be integrated with other technology components of INFINITECH, such as the Streaming Processing
Framework and the Semantic Interoperability Engine. This report extends its first version and summarizes
the work that has been carried out during the first and second phases of the project (M05-M20). It will be
further extended with additional types of algorithms that are popular and of high importance for finance
and insurance organizations and with the complete documentation of the incremental analytics engine, as
the latter is still under development at the time that this report was written. As a result, a final version of
this deliverable will be released at M27 that will report the additional work that will be carried out in the
last phase of the project.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 27

Table of Contents
1 Introduction ... 6

1.1. Objective of the Deliverable .. 8

1.2. Insights from other Tasks and Deliverables... 8

1.3. Structure .. 9

2 Parallel and Incremental algorithm for time series analytics .. 10

2.1 Methods .. 10

2.1.1 Time series correlation discovery .. 10

2.1.2 Time series forecasting .. 11

2.2 Potential use cases in various sectors ... 12

3 Enablers for Incremental Analytics .. 13

3.1 Motivation ... 13

3.2 Traditional Analytical Processing ... 14

3.3 Incremental Analytical Processing ... 15

3.4 Documentation .. 17

3.5 Incremental scans in Practice .. 20

3.6 Future work ... 25

4 Conclusions and next steps ... 26

5 References ... 27

List of Figures
Figure 1: Example of a pair of time series that the method found to be highly correlated over the first
several sliding windows of 500 time points, but not thereafter. .. 10
Figure 2: Example of a time series (red) and its top correlates (green) discovered by the method. 11
Figure 3: A typical query plan .. 14
Figure 4: Class diagram of direct-API for incremental scans ... 18

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 27

Abbreviations/Acronyms
DDoS Distributed Denial of Service

DL Deep Learning

FFT Fast Fourier Transformation

HTAP Hybrid Transactional and Analytical Processing

iSAX Indexable Symbolic Aggregate Approximation

ML Machine Learning

PAA Piecewise Aggregate Approximation

RNN Recurrent Neural Network

SVD Singular Value Decomposition

WP Work Package

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 27

1 Introduction
Modern enterprises tend to use data coming from a variety of heterogeneous sources that are collected via
numerous means and usually stored in a data warehouse or a data lake. Data analysts make use of
sophisticated Artificial Intelligence (AI) algorithms for Machine Learning/Deep Learning (ML/DL) in order to
extract valuable information that is crucial for the business intelligence of the organization. Focusing on the
finance and insurance institutions, typical use cases include online risk assessment through the correlation
discovery of stocks or other financial products, online fraud detection of a financial transaction, optimal
resource management of the overall portfolio of a customer, which can be either a person or another
business institution, and potential identification of investment opportunities.

Typical uses of such cases usually rely on historical data that has been imported into a data warehouse
from an operational datastore or a stream of events or other IoT data. The reason for migrating data from
one data source to another stems from the inherent barrier of performing analytics over an operational
datastore, due to the competitiveness of these two different types of workloads, as explained in the
corresponding deliverables of task T3.1 (“Framework for Seamless Data Management and HTAP”).
Moreover, performing analytics over a stream of data introduces another obstacle, as sophisticated AI
algorithms usually require the full scan of a huge amount of data that cannot be maintained in memory. As
a result, modern architectures require the migration of data coming from various sources to a data lake,
which will allow the data analysts to execute their algorithms in the complete dataset in a parallelized
manner.

Migrating data from one source to another (i.e. from an operational datastore to a data warehouse)
requires complex architectures in case there is the need for analytical processing of (near) real-time data.
Those architectures, apart from being complex, are very difficult to maintain and come with their
drawbacks as they do not holistically solve the problem. To overcome those issues, in INFINITETCH we
envision the Intelligent Data Pipelines that has been described in the corresponding deliverables of T3.4
(“Automated Parallelization of Data Streams and Intelligent Data Pipelining”), which makes use of the
INFINISTORE as the target datastore that data is being continuously migrated to it. By exploiting the
innovations of INFINISTORE that has been developed within the project, typical AI algorithms used in the
finance and insurance sector can be redesigned and make use of such enablers to overcome the current
technology barriers in data management systems.

However, those algorithms tend to rely only on static data that has been stored in a persistent storage
medium. They usually require a pre-processing that takes place in the data management layer, typically by
submitting a query statement that is being pushed down to the datastore and retrieve results that will be
further used as an input for their processing. Moreover, the results they get are related to the snapshot of
the dataset at the time query was received by the datastore. As modern architectures usually migrate data
snapshots periodically (in terms of batches or micro-batches) to another datastore that will receive and
process the incoming analytical workload, this is not considered a problem, as there is this inherent barrier
we cannot cope with. In INFINITECH however, its data management layer provides Hybrid Transactional
and Analytical Processing (HTAP) capabilities and due to the additional innovations such as its online
aggregates implemented under the scope of T5.3, we remove the need for migrating data to a data
warehouse. This means that AI algorithms can submit analytical queries on the live dataset that is being
continuously updated with data ingested from various sources.

As AI algorithms can now retrieve results over a dataset that is being modified in the run-time, we can do
better than that. In this task T5.2, we implement the incremental analytics that can be used as the enablers

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 27

for incrementally designing those algorithms. This means that a deployed analytical processing framework
can submit a query once, get the results for its initial analysis, and continuously receive a data feed of
modifications that can be fed to its algorithms and update the results on the run time, without having to
periodically re-submit the same query to get the data results that reflect the current snapshot of the
dataset, at the new point in time when the query was resubmitted. This can be of a huge benefit for a
variety of AI algorithms in the finance and insurance sector that their purpose is to trigger notifications for
alerts or potential opportunities. This can be used in risk assessment for bank investment, anti-money
laundering or fraudulent financial transactions.

Being able to use incremental analytics and submit a query statement once in the datastore and then
retrieve the results continuously, without having to periodically re-submit the query and retrieve the same
results slightly modified, have a significant impact both from a business and from a technical perspective.
Regarding the technical perspective, the execution can be much more efficient due to the minimization of
the data that need to be transmitted over the network: the results are being retrieved once and only data
modifications will be now transmitted. Moreover, the infrastructure will consume lesser CPU cycles and will
require lesser memory both in data management and in the analytical processing layer as the main
computational power will be spent only at the time the query is submitted. From a business perspective,
the data analyst or business developer can have alerts or notifications at the time a change occurred, rather
than having to wait for the periodic execution of the algorithm.

Another important objective of the work that is being carried out under the scope of task T5.2 is to
parallelize the identified popular AI algorithms in order to boost their performance. Parallelizing however
an algorithm does not guarantee that the performance will be improved by default. There are the
capabilities for advanced analytical processing that enables such a performance boost, which can be
exploited by an alternative design for the execution of such algorithms instead. These enablers for
advanced analytics consist of a family of technology components such as the online aggregates (developed
under the scope of T5.3) and the incremental analytics that are being reported here. Additionally, under
the scope of T3.4, the INFINITECH platform provides the framework for automated parallelization of data
streams. This enables the aforementioned AI algorithms to be deconstructed and deployed in different
streaming processing nodes. These nodes can be parallelized and in fact, they can scale out automatically
with no downtime by exchanging their internal state during run-time. Moreover, this framework can also
benefit from the incremental analytics that are being presented in this report and consume data feeds
coming from data modification operations propagated by the persistent database level. The feeds can be
later fed into the parallelized steaming operators of the streaming processing framework, which can be
used by the AI algorithms themselves. As a result, the re-design of these popular target algorithms takes
into account the holistic approach for the data management layer of INFINITECH.

To conclude, Task T5.2 “Incremental and Parallel Data Analytics” aims to leverage a set of typical algorithms
and libraries used for artificial intelligence in the insurance and finance sectors that can benefit from the
unique characteristics of the data management layer of INFINITECH, in order to re-design them and deliver
parallelized taking into account the incremental analytics, and all other innovations and offerings of the
integrated data management layer of the project. A first family of such analytics had been studied and
reported in the first version of this document and will be further extended with the complete set of a
library of such algorithms in the next iterations of the document. In this second version, we additionally
report the current status of the enabler for incremental analytics.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 27

1.1. Objective of the Deliverable
The objective of this deliverable is to report the work that has been done in the context of task T5.2, at this
phase of the project (M20). This task lasts until M27, and therefore, one more version of this deliverable
will be released, extending and modifying when necessary the content of this document. As new
technological advancements coming from the other technical tasks will be delivered, the work on this task
has been planned to be further developed, as it relies on the basic pillars of the data management layer.
The work that has been delivered during the first and second phases of the project (M05-M20), was mainly
focused on one hand on the implementation of the incremental scans that are the basics for the delivery of
incremental analytics and on the other hand, on the design of the parallelization of a time series algorithm
for risk assessment prediction, which can be also used in other domains. For this purpose, we studied how
to deliver this algorithm in a parallel fashion, by experimenting with the results of other tasks of the
project. Finally, this deliverable reports on how we can deploy such types of algorithms to make use of
streaming processing in order to deliver results incrementally.

1.2. Insights from other Tasks and Deliverables
The work that has been carried out in the scope of T5.2 relies on the outcomes of the T2.1 (“User Stories
and Analysis of Stakeholders' Requirements”) that define the overall user stories and requirements of the
use cases of INFINITECH, and how the implementation can be integrated with the achievements of the
other technical tasks, as defined in the INFINITECH RA. All those are part of WP2, and more precisely of T2.3
("Specification of Enhancements to BigData & IoT Platform") and T2.5 ("Open Banking APIs, Testbeds and
Data Assets Specifications"). Apart from this, WP3 gives significant input to this task, as it implements the
basic technological pillars for T5.2 to rely on. WP3 provides the overall data management layer of the
project. More precisely, T3.1 (“Framework for Seamless Data Management and HTAP”) provides the ability
to rely on a single operational datastore, the INFINISTORE, that can be used to process analytical workload
without having to migrate data to a data warehousing technology. T3.3 (“Integrated Querying of Streaming
Data and Data at Rest”) implements the unified data query processing framework, which allows the
correlation of streaming with batch processing. Moreover, T5.3 (“Declarative Real-Time Data Analytics”)
provides the implementation of online aggregations that can be used by the algorithms in this task. The
online aggregations allow the pre-calculation of an aggregated value, thus removing the necessity to
perform a full scan on a data table to calculate that value when this is needed. These technologies can be
used as enablers to allow the efficient parallelization of commonly used AI algorithms in the financial and
insurance sectors. Moreover, this parallelization can take advantage of the parallelization of the streaming
processing nodes provided by T3.4 (“Automated Parallelization of Data Streams and Intelligent Data
Pipelining”). Additionally, task T3.4 can also consume data feeds coming from incremental analytics that
are being currently developed and reported in this document. The data feed will reflect the data
modifications on the dataset stored in the operational database and can be used as an input to the
parallelized streaming processing nodes, that are further used by the AI algorithms. Last but not least, the
data stream of the transaction logs produced by the data modification operations can also feed the
streaming plugins developed within the context of the Semantic Interoperability Framework developed
under the scope of T4.1 ("Shared Semantics for BigData and IoT Streams") and T4.2 ("Massive Distributed
Processing of Semantically Linked Streams"). This framework internally makes use of a triple store that
need to be populated with data coming from a persistent storage that needs to be inter-exchanged with
other datasets. As a result, the incremental scans can update this internal triple store, via the Intelligent
Data Pipelines of task T3.4 so that the semantic engine can be always up to date.

We can see that this task is tightly coupled and interconnected with the majority of other tasks that belong
to the technical work packages of WP3, WP4 and WP5 and provide the technological building blocks and
offerings of the INFINITECH ecosystem. Therefore, we prioritized at the first phase of the project to give

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 27

more focus on these specific tasks first, which will be exploited at this second phase by T5.2. Moreover, the
implementation of the incremental analytics requires the provision of incremental scans first, which rely on
the propagation of the data modifications by the storage engine of INFINITECH. However, a parallel work
needed by T5.3 to implement the online aggregates also required the extension and modification of the
storage engine, and more precisely, its indexing mechanism and data structures. Therefore, it was not
possible to progress on both tasks at the same time and we prioritized at the first phase to give more focus
on the T5.3. Right now, the implementation of the incremental analytics has been started with the delivery
of the provision of the first part, the incremental scans.

1.3. Structure
This document is structured as follows: Section 1 introduces the document. Section 2 provides details on
how a commonly used AI algorithm can be parallelized and benefit from using the innovations provided by
the data management layer of INFINITECH. Section 3 focuses on the incremental analytics part: it firstly
states the motivation behind such technology and then it provides the basic principles and design of their
implementation. It adds documentation for its use and provides a concrete example with a demonstrator
relying on a real use case taken from pilot#2 of INFINITECH. Finally, section 4 concludes the document.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 27

2 Parallel and Incremental algorithm for time series
analytics

Nowadays, we are witnessing the production of large volumes of complex data, often in the form of time
series. These may originate from various sources, e.g. financial activities, such as stock trading or bank
transactions, as well as monitoring network activity or collecting data from sensors. Time series analytics
allow extracting useful insights from streams of numeric data through various statistical, algorithmic, or
machine learning methods.

2.1 Methods
Intending to leverage the inherent features of the INFINITECH data management layer, which is currently
implemented under the corresponding tasks of WP3, focusing on aspects such as its increased scalability,
the allowance for data ingestions at very high rates, and the online aggregations, under the scope of this
task, we are currently focusing on two aspects of time series analytics: correlation discovery and
forecasting methods discussed briefly below.

2.1.1 Time series correlation discovery
Time series correlation discovery aims at finding similarities across time series, as shown in Figure 1, based
on a distance metric, most commonly the Euclidean distance. This can be achieved using various methods
for dimensionality reduction, e.g. singular value decomposition (SVD) [1], Fast Fourier Transform (FFT) [2],
[3], wavelets [4], piecewise aggregate approximation (PAA) [5], random projections [6], as well as indexing,
e.g. the iSAX (indexable Symbolic Aggregate ApproXimation) tree index [7], locality sensitive hashing
through sketches [8] and more.

Figure 1: Example of a pair of time series that the method found to be highly correlated over the first several sliding
windows of 500 time points, but not thereafter.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 27

For the INFINITECH project, we concentrate on ParCorr, a recently introduced parallel incremental
approach for fast correlation discovery over windows of time series data [8]. The method scales to millions
of parallel time series and achieves 95% recall and 100% precision. To address dimensionality reduction
that nearly preserves the Euclidean distances across the latest window of time, it uses a random projection
approach to compute in an incremental manner and in parallel the sketch of each time series. The sketch is
a tiny structure that summarizes the time series by preserving its locality, so simply comparing sketches
provides filtering to significantly reduce the search space for the much more expensive comparison of time
series. We are focusing on that approach, taking into account the overall data management layer of the
INFINITECH platform, which will exploit the use of the central data repository in order to boost the
performance of this locality sensitive hashing approach. This will allow for almost real-time discovery of the
top-k correlates of a given time series (see Figure 2), which further helps to build a model for instantly
predicting future values of the time series as a function of the values of its correlates.

Figure 2: Example of a time series (red) and its top correlates (green) discovered by the method.

2.1.2 Time series forecasting

Statistical methods for time series forecasting [9] usually analyse the values of a single time series, often
with a focus on the most recent ones, to predict the next value. Simple methods, such as moving averages
(MA), i.e., the average of the last few slices of time, in many cases provide a good approximation for the
expected value of the time series in the future moments. In other models of approximations that need to
give more weight to the most recent values, exponential smoothing [10] would improve the forecasting
accuracy. In more sophisticated scenarios, ARMA methods or deep recurrent neural networks (RNNs) can
be used to capture more complex dependencies in data. Very often, all these methods work better when
applied to the differences between any two consecutive points in a time series instead of directly to the
time series itself, a transformation known as “differencing”.

For the INFINITECH project, we propose an efficient framework, benefiting from the features of its integral
data management layer, to incrementally perform in real-time moving averages, exponential smoothing,
and differencing of each time series towards predicting its values for the upcoming time points. Moreover,
different methods can be combined to capture specific behaviour, e.g. similarity search can be done by
computing sketches on top of exponentially smoothed values and/or differencing and/or moving averages.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 27

2.2 Potential use cases in various sectors

Time series analytics has applications in many different domains, some of which are mentioned below:

• Finance/stock trading: a pair of time series (say Google and Apple prices) that were similar before,
but have ever since diverged, may represent a trading opportunity.

• Seismology: correlated signals from several different but not much distant seismic sensors may
suggest that they are all related to the same seismic event.

• Network monitoring: similar traffic patterns from different sources may indicate an attempt for
distributed denial of service (DDoS) attack.

• Retail/trading: future demand of a product can be approximated with statistical methods for
forecasting (using the recent history of sales and/or seasonal factors), as well as through the use of
discovered correlations with other indicators (such as prices and sales of other products, weather
conditions, social trends, etc.).

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 27

3 Enablers for Incremental Analytics

This chapter is related to the second major objective, which is the implementation of the enablers for
incremental analytics. We will give an example taken from one of the pilots of the project to highlight the
motivation of such a technology, and then we will compare how the query is typically processed
traditionally by the INFINISTORE, and how it is processed with the implementation of the incremental
analytics. Then, the documentation and a demonstrator of its usage will be given. Finally, we mention the
work that is planned to be done during the final phase of the project.

3.1 Motivation
The basic principle behind incremental analytics is the ability to retrieve results as soon as they become
available. That means, the moment when data arrives the data management system. With a traditional
approach, the data user or application developer submits a query statement (that can be a SQL or other) to
the datastore targeting a dataset, the database examines which part of the target dataset satisfies the
query and returns this part as the result. In most common cases the result is a virtual table or a list of
arrays, but this is not a necessity. This result set is being used then by a part of a micro-service or a building
block of an application or is being given as the input for an AI algorithm. The important thing that needs to
be highlighted here is that the result set is the part of the dataset that satisfies the initial submitted
statement, at the point in time when the query was actually submitted to the datastore and the latter
started its processing. This means that if the data user or application developer wants to re-evaluate the
data and check what might be the result after a specific time period, he or she would need to re-submit the
same query and get the updated result, which will now reflect the snapshot of the dataset at this new point
in time when it was re-submitted.

A typical example coming from the finance sector is the evaluation of the risk assessment for investing in
various products. We will take the example of pilot#2 (“Real-time risk assessment in Investment Banking”)
of INFINITECH that deals with such scenarios. Pilot#2 receives from various data streams the financial
currencies of different products per second. This data stream is being ingested to the data management
system of the project, the INFINISTORE, which persistently stores it to a data table. Then an AI algorithm is
being periodically executed to calculate the value at risk of the products and propose possible
opportunities to potential investors. The algorithm needs to consume a big amount of data to be able to
calculate with a specific accuracy the value at risk. Typically, it requires collecting the financial currencies of
the latest months, when each month contains 60*60*24*30 = ~2.5 million records per product. This would
require for the database to firstly process its entire dataset and validate that ~2.5 million records that
satisfy the query, then transmit all this information through the network, and finally, the AI risk assessment
algorithm to further process all these records and return with a decision. As this requires a significant
amount of processing power and time, the algorithm is being executed periodically every 5 minutes.

From our example, it is obvious that the proposed identified opportunity to the potential investor is taking
into account the snapshot of the database the moment the AI algorithm requested data from the
datastore. The next identified opportunity will rely on an updated snapshot, 5 minutes later the first one.
However, pilot#2 is continuously receiving financial currencies for products, every second. With our
traditional approach, we will always miss the 5*60 = 300 intermediate snapshots between the two points in
time when we periodically request data. What if we could have all intermediate information? This would
mean that we need to evaluate the submitted query in every snapshot of the dataset. Thus, this would

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 27

mean evaluating the query whenever the database transits its state due to the execution of a data
modification operation. This is exactly what the incremental analytics are solving.

3.2 Traditional Analytical Processing
But how does this work? Let’s think about a traditional relational database that implements a standard
JDBC interface to allow data connectivity. In JDBC, the application developer would have opened a new
connection, then would have created a statement based on an SQL query, then would have executed that
statement and finally would have been returned by the database a result set. The latter is the structure or
instance of the class that contains and handles the data that satisfy the query and will be returned to the
invoker. As we are discussing how the JDBC works, in Java the ResultSet is eventually extending the Iterator
interface, and as such, it is practically an iterator. Each iterator, no matter what its internal implementation
would be, declares a next method. We should now image the returned data as a list of arrays, where the
array can is the data row of the virtual table defined by the SQL statement. In each invocation of the next
method, firstly the execution is being done synchronously, and as such, this method is a blocking method.
Secondly, the result of the invocation is the next item in our list of arrays, or a null, if we have reached the
end of the list.

To better understand how execution and processing of a query are being done, we need to also deep down
to the query engine level. The query receives the query statement that needs to be executed via the JDBC
connection that has been opened from the client/driver. It then compiles it in order to transform the
statement that has been received in a text form, to a structure form that can be manipulated or processed
by the machine. This is the query plan. Most modern query engines send the initially generated query plan
to a query optimizer, whose role is to produce different equivalent query plans, by applying specific
transformation rules. Then it calculates the overall cost of execution of each plan, and finally, using a
greedy type of algorithm, it returns the optimal one in terms of cost, which will be finally executed. The
query plan is a tree of operations that all together formulate the overall plan for the execution of the
submitted query. Taken from D3.2 (“Hybrid Transactional/Analytics Processing for Finance and Insurance
Applications – II”) an example query plan can be the one depicted in Figure 3.

Figure 3: A typical query plan

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 27

The query contains the JOIN between two tables (Persons, Accounts), while the data user applies a filter
criteria over the table Persons, while finally, we project two columns (Name, Account) that define the
resulted virtual table to be retrieved. The query plan contains different types of query operators, and in our
example, we can see the filter, scan, join, projection. Internally the query engine contains one or more
implementations per each type of operation, while each operation extends the interface iterator, thus,
implements the method next. The query engine instantiates an instance of each of the operations that take
part in the overall query plan. The query plan is now formulating a data pipeline of query operators that
can be now executed.

Now, how does the driver collect the results that can be now accessible from the application code or AI
algorithm? The reader needs to recall that in JDBC, the result of the execution of a statement is a Result Set,
that is an Iterator and such, implements the method next. Moreover, as we saw all query operations
involved in the query plan to be finally executed are iterators, and such, implement the method next. As a
result, each time the application code or AI algorithm invokes the method next of the ResultSet, the latter
will invoke the corresponding one of the upper-level query operators of the tree of the query plan. In our
example, that will be the projection. This one will invoke the corresponding next method of the query
operation of the lower level, and so on. At the lowest level of the query tree, there lies the type of
operations that access the storage or the index and retrieve data bytes that are related to a data row in a
data table. The data row then is being forwarded through the data pipeline to the upper layers, where it is
being processed accordingly, and finally, it reaches the data user through the initial invocation of the next
method of the Result Set of the driver. This is how the query processing is being done in the query engine of
the INFINISTORE, and generally, this is how most modern database management systems have been
designed.

At this point, we need to underline that this was a simplified example, and the query processing is more
complicated. All query operations do not request for the next value synchronously, but instead, they keep
internally an array of rows that can be forwarded. This is considered as a buffer. Operators fill this buffer
immediately when there is a row available so that the upper layer does not need to wait. A similar
approach happens between the communication between the driver and the backend, the query engine:
results are filling an intermediate buffer, and are being sent via batches to the driver. In each invocation of
the next method, the driver gets the next item of the buffer, and when the buffer is closed to empty, it
requests the next batch from the query engine, that has been filled by the upper operation of the query
tree. However, using a buffering mechanism or not, the basic principles are the same.

3.3 Incremental Analytical Processing
As we saw in the previous subsection, the invocation of the next method returns the next item of the list of
the data rows. Or null. This happens when there is no other item to be retrieved from the lower layer, or
the storage or index. When the method returns a null method, the operator should be closed and
eventually removed by the garbage collector. This happens because the query execution is taken over a
fully timely bounded dataset. If we think of a dataset as the collection of incremental transitions between
states that have been created by the invocation of a data modification operation, then the dataset is a live
object that is continuously being changed. However, with the traditional analytical query processing, we
can only see a snapshot of the living dataset: the one at the point in time when the query was submitted
for execution. That is what we call a fully timely bounded dataset.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 27

In incremental analytics, the query statements are being executed over a timely unbounded dataset, which
is a dataset that is not a snapshot but rather can change as time progress. These are now continuous
queries, whose results are being returned continuously or as we better call in an incremental manner. What
does this mean in practice? Let’s imagine that we have the following statement, that returns all records
from the Persons table, whose name starts with ‘P’:

SELECT *

FROM PERSONS

WHERE name LIKE 'P?'

Let’s assume that this data table has 1000 rows, and 100 of them have a value in the name column whose
first letter is P, like Pedro, Paula or Pelopidas. In the traditional approach, we would have received those
100 rows and then the iterator would have been closed. However, using incremental analytics, we submit a
continuous query over a timely unbound dataset and the corresponding iterator never closes (or at least, it
closes after a pre-defined period of time). During the execution, the iterator returns the same 100 rows as
before, however, that time, it stays open. This means that the query is continuing to evaluate the dataset,
as the latter transits its state, reflecting the results of the data modification operators. In practice,
whenever a new row is being inserted, it will be evaluated against the continuous query.

In our example, after the initial return of the first 100 rows, the iterator is blocked and wait for new items
to be sent from the backend, the query engine. In the meantime, new data arrives and we add a new
record in the Persons table, whose value of the column name is Samantha. Samantha starts with ‘S’, it will
be evaluated by the query statement, and won’t be picked up. Then a new record arrives, with the value as
‘George’. Again, it will be evaluated and won’t be selected. Later on, a new record is being ingested to the
database, whose value is now ‘Patricia’. This will be picked up by the lower query operator and further
pushed to the upper layers of the query tree. In our example, there are no other layers, so this data row
will be sent to the driver, and eventually, the iterator of the ResultSet will return the value and wait for the
next one to arrive.

Let’s examine the same with our previous example, whose query tree was depicted in Figure 3. The query
was the following:

SELECT P.name, A.account

FROM PERSONS P INNER JOIN Account A ON P.ID=A.P_ID

WHERE P.age>60

Here we want to see all accounts of persons that are above 60 years old. The execution returns an initial list
of 100 data rows. However, even if the query is more complicated, the iterator remains open, and so does
the query execution plan with the established data pipeline of query operations. Let’s assume that table
Persons contains a record Pavlos, who is 30 years old, and a record Natasha, who is 65 years old. Now
Natasha opens a new account, so there is a new insertion in the data table Account. This will be picked up
by the lower query operator that scans this table, and as there is no filter, it will be picked up and
forwarded to its upper layer. There will be retrieved by the implementation of the JOIN operator. It will
receive the record, join the latter with the corresponding record related to the Natasha data record, and
push the processed record to the upper layer. Eventually, it will arrive at the driver, and the AI algorithm or
the application code will receive it from the corresponding iterator that still remains open.

Now Pavlos opens a new account. As before, a new record will be added to the Account data table that will
be evaluated by the query operator and pushed to the implementation of the join. The latter, however, will

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 27

not find any data record of Pavlos to join the newly added account, as Pavlos is lesser than 60 years old,
and hadn’t been retrieved by the filtering operation. As a result, even if the newly added record was
received, it won’t reach the driver as it wasn’t valid against the submitted query statement.

In this example we had two state transitions of the dataset, due to the two data modification operations
that took place, the insertion of two new accounts. Our query was executed incrementally, thus continued
to validate the dataset following the incremental transitions of state.

Going back to pilot#2 that drove the motivation for implementing the incremental analytics, the AI
algorithm for risk assessment requires the calculation of the average value of the financial currency of a
product per hour. This is translated to a query containing aggregation operations. As previously, it will be
passed through the query compiler and eventually a query plan will be decided to be executed. This will
eventually instantiate a data pipeline of query operations that formulate the tree of the query plan, and
whose execution can be done incrementally. Instead of pilot#2 periodically send a query statement to
retrieve timely bounded results, it can send the statement once, and each time a new data modifies the
selected dataset, it will be evaluated and inform the driver. The AI algorithm now can respond/listen to
events receiving as the result of a data modification operation and can calculate the value at risk in real-
time, thus avoiding opportunities that might have been occurred but missed during the time period
between the two periodic invocations.

Until the time that this report was written, we have extended the storage engine of the INFINISTORE to
support the incremental analytics. The operations that take place in the storage layer are related to data
access, and thus, are implemented at this layer. The data storage can identify incremental data transitions
in a data table or data index. Moreover, it can be pushed down operations like filters. Therefore, at this
phase, the INFINISTORE support what we call incremental scans. This is the basic pillar for all other
operations to be built upon, as we saw in our previous example. Moreover, we have implemented their
invocation from the direct API that the INFINISTORE exposes. This can be used in order to exploit such
capabilities. The following subsections contain the documentation of such usage and an example on how to
use this in practice.

3.4 Documentation
In this subsection, we will provide some details on how the direct API that allows the use of incremental
scans has been designed. The class diagram of the main classes that should be used can be depicted in
Figure 4.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 27

Figure 4: Class diagram of direct-API for incremental scans

The basic object that we need to first create is the session, which resembles the Connection in JDBC. It
keeps a connection open with the storage layer of INFINISTORE, manages transactions and allows the
application developer to perform operations on the connection level. From this object, we can connect to a
specific logical database that we want to get or store data.

The object database allows us to do operations on the logical database level. Typical operations can be the
creation of a data table, index or sequence, or the deletion of these structures. Another important category
of provided methods is the one that return an instance to manage these structures. That way, the
application developer can have access to a specific data table that he or she wants to perform some
operations.

The object table provides access to a specific data table. The user can insert, update, delete or request a get
or scan operation, in order to modify or retrieve data rows. In the storage engine, each data row is
represented by an object of the class Tuple. This class can be further extended to TupleKey, TupleUpdate,
TupleDelete etc, that provide some additional functionalities related to the corresponding operations. For
instance, the TupleKey is a Tuple, where only the fields that consist of the primary key are fulfilled with
values. One of the most important methods of the Table is the filter that allows the data user or application
developer to perform a scan operation over a data table structure. As we saw, the result of such operation
will always have to be an implementation of an Iterator that will allow the retrieval of data rows from the
list of arrays that formulate the virtual table of the result of the scan/filter operation.

The TupleIterable is the result of the invocation of the find operation that allows the data user to retrieve
data items. As it is depicted from the class diagram, it extends the Iterable generic interface, which is
concretized by defining that it will iterate over objects of class Tuple. This is the class that holds information
on the data row level. The TupleIterable can be declared to do a scan using a Filter. This resembles the
WHERE clause in standard SQL, while there are additional methods to declare the projection of the result
(equivalent to the SELECT clause of the standard SQL) etc. The data user or application developer can use

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 27

this TupleIterable object to execute such statements in order to access the storage system and retrieve the
data from the datastore.

All these classes and methods implement functionality for a static retrieval of data, or as we mentioned,
allow the data users to perform operations over a timely bounded dataset. That is the snapshot of the living
dataset at the specific point in time when the query (or the call to scan) occurs. So, how can we use our
newly developed incremental scans? To do so, we need to create the ScanStreamBuilder object. This will
eventually return a Steam, concretized by defining that this stream will be over Tuples. The
ScanStreamBuilder provides methods to configure how the stream will behave: start, stop, being an infinite,
or it has to receive steam for a specific Duration of time.

We will see all these in practice in the following subsection. The remaining of this one contains more
detailed information of the classes defined in the class diagram of Figure 4, along with a documentation of
the most important methods of each class.

Session

• int getSessionId(); Returns unique identifier for this session.

• Database database(); Provides access to Database object, which is the entry point for all the
operations related to data.

• void commit(); Commits all the operations done since the last begin transaction.

• void rollback(); Rollbacks all the operations done since the last begin transaction.

• boolean inTransaction(); Indicates whether the session has a transaction started or not.

• void close(); Closes the current session. Every operation called after this call will throw an
IllegalStateException.

Database

• Table createTable(String name, List<Field> keyFields, List<Field> fields); Creates a new table in the
database.

• Index createIndex(String tableName, String indexName, List<Field> fields, boolean isUnique);
Creates a new index on the table. The index name must not exist on the table, and cannot be null.
The field list must not be empty.

• boolean tableExists(String tableName); Return if a table exists or not.

• Collection<Table> getTables(); Retrieves the full list of database tables.

• Table getTable(String name); Retrieves an existing table given its name.

Table

• Tuple createTuple(); Creates an empty tuple with the list of fields of the table format, including the
primary key fields.

• Tuple get(TupleKey key); Retrieves a single tuple from a given key.

• Table upsert(Tuple tuple); Updates or inserts a tuple. If the tuple exists, is modified and if not, is
inserted.

• Table update(Tuple tuple); Updates an existing tuple. If the tuple doesn't exist (it means, a tuple
with the same tupleKey) it will throw an Exception.

• Table delete(TupleKey tupleKey); Deletes an existing tuple given its key. If the tuple doesn't exist it
does nothing. If the tuple key is incomplete, it will scan the table searching for the tuples that

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 27

match the part of the key that is defined, and it will remove all the tuples that match with the
defined part of the tupleKey.

• TupleIterable find(); EntryPoint to run queries over the table. This method returns a TupleIterable
object which allows to be configured and traversed to scan the table data.

TupleIterable

• TupleIterable filter(Filter filter); Configures this TupleIterable to use a filter over the Table tuples.

• TupleIterable first(long n); Configures this TupleIterable to return the first n tuples.

• TupleIterable skip(long n); Configures this TupleIterable to skip the first n tuples.

• TupleIterable project(Projection projection); Configures this filter to make a projection over the
result tuple fields. If this method is called after an aggregation call, the projection will apply aver
the result aggregation fields, not the original table tuple fields.

• TupleIterable sort(); Configures this TupleIterable to return values ordered by the PK

• TupleIterable reverse(); Configures this TupleIterable to do the scan in a reverse order.

• TupleIterable fromTupleTs(Tuple tuple); Configure the tuple to search from. This is, only tuples
inserted or modified after the given tuple was inserted (or modified) will be taken into account by
the scan. By default the given tuple (and all commited in the same commit) will not be included in
the scan

• TupleIterable fromNow(Session session); Configure the scan to search only tuples committed after
this moment ts. This is, only tuples inserted or modified between the call of this method and the
execution of the scan will be taken into account by the scan
ScanStreamBuilder asStream(); Creates a stream builder that allows to get the scan results in the
form of a stream.

ScanStreamBuilder

• ScanStreamBuilder allowInternalCommits(); Allow commits from a stream lambda iteration. For
example, if you want to go over the stream with a foreach lambda and inside that lambda you want
to do some commit, you need to call this method, otherwise, the commits from the lambda will be
rejected. On the other hand, if you allow internal commits you will not be able to see session
modifications that are not committed.

• ScanStreamBuilder infinite(); Configure the stream as infinite. After returning all the rows that
matched with the scan at this moment will wait infinitely for new rows. The only way to stop the
stream and return the execution control to the client is calling the method stop

• ScanStreamBuilder duration(Duration duration); Sets the max duration of this stream. The time
starts to count when the stream method is called

• Stream<Tuple> stream(); Creates and open a Stream to retrieve the tuples from the DB

3.5 Incremental scans in Practice
In this subsection we will provide a sample code snippet of how to make use of the incremental scans that
have been developed during this second phase of the project. We will rely on a real user scenario taken
from pilot#2 (“Real-time risk assessment in Investment Banking”) of INFINITECH. As we mention, the
scenario is that data related to the financial currencies of products are being ingested into the INFINISTORE,
connecting the external stream to an interim Kafka queue that transparently stores the data stream to the
datastore, making use of our developed connector.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 27

We will first setup the deployment and start sending data, and then we will write some code to get results
incrementally, by using an infinite Stream. The incremental scans have been integrated with the storage
engine of INFINISTORE and are now an integral part of it. Thus, we need to deploy the datastore. Having
the INFINITECH way for deploying technological building blocks, we will make use of the specific blueprints
and Kubernetes for the container orchestration. The following configuration will deploy the datastore.

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: infinistore

 labels:

 app: infinistore

spec:

 serviceName: infinistore-service

 replicas: 1

 selector:

 matchLabels:

 app: infinistore

 updateStrategy:

 type: RollingUpdate

 podManagementPolicy: OrderedReady

 template:

 metadata:

 labels:

 app: infinistore

 spec:

 initContainers:

 - name: infinistore-home-fix

 image: busybox:1.30.1

 command: ["/bin/sh", "-c", "chown -R 999:999 /datasets"]

 volumeMounts:

 - name: infinistore-datasets-storage

 mountPath: /datasets

 containers:

 - image: harbor.infinitech-h2020.eu/data-management/infinistore:latest

 name: infinistore

 ports:

 - containerPort: 2181

 - containerPort: 1529

 - containerPort: 9876

 - containerPort: 9992

 - containerPort: 14400

 - containerPort: 9800

 volumeMounts:

 - name: infinistore-datasets-storage

 mountPath: /datasets

 startupProbe:

 exec:

 command:

 - /bin/sh

 - -c

 - python3 /lx/LX-BIN/scripts/lxManageNode.py check QE

 timeoutSeconds: 5

 failureThreshold: 30

 periodSeconds: 10

 resources:

 limits:

 cpu: 4000m

 memory: 8Gi

 requests:

 cpu: 2000m

 memory: 4Gi

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 27

 env:

 - name: USEIP

 value: "yes"

 - name: KVPEXTERNALIP

 value: "infinistore-service!9800"

 restartPolicy: Always

 imagePullSecrets:

 - name: registrysecret

 volumes:

 - name: infinistore-datasets-storage

 persistentVolumeClaim:

 claimName: infinistore-datasets-pvc

We would also need to define a service to expose the various ports to access the storage engine:

apiVersion: v1

kind: Service

metadata:

 name: infinistore-service

 labels:

 app: infinistore

spec:

 ports:

 - name: "9876"

 port: 9876

 targetPort: 9876

 - name: "9992"

 port: 9992

 targetPort: 9992

 - name: "14400"

 port: 14400

 targetPort: 14400

 - name: "9800"

 port: 9800

 targetPort: 9800 selector:

 app: infinistore

Then, we will deploy the kafka queue that will connect to the INFINISTORE. We will also make use of the
corresponding blueprint:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: lx-kafka

 labels:

 app: lx-kafka

spec:

 serviceName: lx-kafka-service

 replicas: 1

 selector:

 matchLabels:

 app: lx-kafka

 updateStrategy:

 type: RollingUpdate

 podManagementPolicy: OrderedReady

 template:

 metadata:

 labels:

 app: lx-kafka

 spec:

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 27

 containers:

 - image: harbor.infinitech-h2020.eu/interface/lx-kafka:latest

 name: lx-kafka

 ports:

 - containerPort: 8081

 - containerPort: 9092

 resources:

 limits:

 cpu: 2000m

 memory: 2Gi

 requests:

 cpu: 1000m

 memory: 1Gi

 env:

 - name: advertised_url

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: advertised.url

 - name: advertised_port

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: advertised.port

 - name: topics_total

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: topics.total

 - name: connection_url_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: connection.url.1

 - name: topics_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: topics.1

 - name: connection_database_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: connection.database.1

 - name: database_tablename_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: database.tablename.1

 - name: pk_fields_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: pk.fields.1

 - name: fields_whitelist_1

 valueFrom:

 configMapKeyRef:

 name: lx-kafka-configmap

 key: fields.whitelist.1

 restartPolicy: Always

 imagePullSecrets:

 - name: registrysecret

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 27

The kafka queue needs a ConfigMap to configure the topic to listen to, the target data table, its primary key
and fields. For the scenario of pilot#2, the configuration should be as follows:

apiVersion: v1

kind: ConfigMap

metadata:

 name: lx-kafka-configmap

data:

 advertised.url: rancher.vps.uninova.pt

 advertised.port: "30202"

 topics.total: "1"

 connection.url.1: infinistore-service

 topics.1: tickdata

 connection.database.1: JRC

 database.tablename.1: TickData

 pk.fields.1: PRODUCT, DATETIME

 fields.whitelist.1: TIK_OPEN, TIK_HIGH, TIK_LOW, TIK_CLOSE, TIK_UP, TIK_DOWN

Here the name of the logical database is ‘JRC’, while the data table to store the data stream is ‘TickData’.
We will use those names in our code of the incremental scans.

To start a data stream so that data can be loaded, we can make use of the stream simulator we have
developed for the needs of this pilot. It can be found at the project’s repository3. Now that we have
everything in place, we start the simulator, and we can see data being generated and send to the queue,
and from there, down to the datastore.

The following code snippet demonstrates how we can make use of our incremental scans:

Settings settings = Settings.parse("lx://lxserver:9876/JRC@APP");

try(SessionImpl session = (SessionImpl) SessionFactory.newSession(settings)){

 Table tickData = session.database().getTable("TickData");

 //waits for all new tuples committed to the DB from this moment and return it in the stream

tickData.find().fromNow(session).asStream().allowInternalCommits().infinite().stream().forEach(tickD

ataRow ->{

 //do something with the row

 System.out.println("new row: " + tickDataRow.toString());

 session.commit();

 });

}

In this sample code, we first open a connection using the SessionFactory to create the Session object. It
makes use of the Settings object that is configured to connect to the specified location. Then, based on the
documentation of the previous subsection, we create the Database object, that will connect to the JRC
database, as defined in the connection URL, and then we will get the Table object to access the TickData
table. Then, we need to execute a scan operation. We invoke the find method that returns the Iterable
object. We did not provide any input argument to this method, so this is going to do a full scan over the
TickData table. However, as we need to get a Stream of Tuples and get results as they are being added, we
invoke the asStream method that returns the ScanStreamBuilder object. At this point, we need to configure
our stream, before executing. We define that this will be an infinite stream and that we are allowed to do
internal commits using the same session object we had for opening the stream. Finally, the stream method

3 https://gitlab.infinitech-h2020.eu/pilot_2/ticksimulator

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 27

opens the stream, returns an object of the class Stream<Tuple> on which we can iterate using lambda
expressions. In our sample code, we print the data item to the output of the console.

As we can see from our code snippet, even if the concepts behind the design and implementation of the
incremental scans might seem complex, the exposed interface is fairly simple and intuitive. We manage the
incremental scans the same way we manage normal scans, with the difference of having to configure the
ScanStreamBuilder. Concerning best practices and design patterns, the use of the Builder makes it easy for
the application developer to configure the stream and get the newly added records that satisfy the filter
conditions in a Java native way, as he or she can iterate as with any other type of object.

3.6 Future work
As we saw, at the time this report was written, we have implemented the basic pillar for the delivery of
incremental analytics. That is the incremental scans. They can be exploited by using the INFINISTORE direct
API. In the final phase, we will first what other operations might be of interest to support an incremental
execution. This will allow the implementation of other operations in the upper layers of a tree of a query
plan that will allow for generic incremental analytics.

A second important amount of work is the implementation of a Kafka Sinker that can receive data
modifications from the INFINISTORE, which is now enabled by the delivery of the incremental scans. This
will allow the integration with the Debezium framework for the Change Data Capture paradigm, which has
a central role in the INFINITECH Intelligent Data Pipelines, and is described in the D3.10 ("Automatic
Parallelization of Data Streams and Intelligent Pipelining - II"). Having these data pipelines delivered will
enable the integration with the Semantic Interoperability Engine that is currently being implemented under
the scope of the WP4 activities. The latter need to feed its internal triple-store with data ingested in the
INFINISTORE. Whenever a data modification (i.e. insertion) takes place, this can be captured by the
incremental scans and sent via the Kafka Sinker to the Debezium instance that interconnects the various
nodes of the Intelligent Data Pipelines, and eventually consumed by the connector of the Semantic Engine
to store the data to its triple-store. This demonstrates the central role of the incremental scans in the
overall project.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 27

4 Conclusions and next steps
This report documented the work that has been carried out in the scope of task T5.2 “Incremental and
Parallel Data Analytics” at this second phase of the project. The main objective of this task is on one hand
to deliver a set of algorithms that are currently being used frequently in the insurance and finance section,
relying on well-known families of machine learning implementations for correlation discovery and
forecasting based on time-series prediction, clustering and collaborative filtering. The goal is to make use of
these algorithms, parallelize them and make them incremental. This is enabled by accomplishing the
second objective of this task which is the provision of incremental analytics. During this second phase of the
project, we focused on extending the storage engine of the INFINISTORE in order to allow the propagation
of data modifications that can be further used at the level of the query engine. The latter can now be
configured via a well-defined API to return the results of a submitted query incrementally.

This deliverable firstly gives an overview of how we plan to parallelize algorithms for collaborative
discovery and time-series prediction. Taking into consideration that gathering the relevant information
regarding the specific algorithms that the pilot cases will devise is under progress at this phase, we focused
on the two that we consider important for a variety of use cases. Secondly, we provided the motivation
behind the implementation of incremental analytics and the basic principles and design of our solution.
Furthermore, we added documentation regarding the use of the incremental scans, along with some
examples using code snippets that rely on a rear user scenario taking from pilot#2 of INFINITECH. During
the last phase (M20-M27) we will implement a Kafka Sinker that will make use of our incremental scans to
send data modifications to other target data sources. This will be exploited by the Intelligent Data Pipelines
of INFINITECH, defined and implemented under the scope of T3.4. This will enable the integration of the
Semantic Interoperability Engine of the platform with its data management layer. Therefore, more detailed
information will be reported in the last iteration of this deliverable.

D5.2 Library of Parallelized Incremental Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 27

5 References
[1] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in timeseries
databases. In Proceedings of the International Conference on Management of Data (SIGMOD), pages 419-
429, 1994.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. E cient similarity search in sequence databases. In
Proceedings of the International Conference on Foundations of Data Organization and Algorithms (FODO),
pages 69-84. Springer-Verlag, 1993.

[3] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. Gupta, and E. Keogh. The fastest similarity
search algorithm for time series subsequences under euclidean distance, August 2017.
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

[4] K. Chan and A. W. Fu. E cient time series matching by wavelets. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 126-133. IEEE Computer Society, 1999.

[5] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity
search in large time series databases. Knowledge and Information Systems (KAIS), 3(3):263-286, 2001.

[6] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative time series. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 743-749. ACM,
2005.

[7] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh. Beyond one billion time series:
indexing and mining very large time series collections with iSAX2+. Knowledge and Information Systems
(KAIS), 39(1):123-151, 2014.

[8] Yagoubi, D.-E., Akbarinia, R., Kolev, B., Levchenko, O., Masseglia, F., Valduriez, P., Shasha, D., 2018.
ParCorr: Efficient Parallel Methods to Identify Similar Time Series Pairs across Sliding Windows. Data Mining
and Knowledge Discovery, vol. 32(5), pp 1481-1507. Springer.

[9] R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. https://otexts.com/fpp2

[10] Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.

