
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D4.6 – Semantics Streams Analytics Engine III

Lead Beneficiary NUIG
Task Reference T4.2
Revision Number 3.0
Deliverable Type Report (R)
Dissemination Level Public (PU)
Due Date 2021-12-31
Delivered Date 2022-04-30
Internal Reviewers GFT, NUIG-Insight

Quality Assurance INNOV

Review Status Internally Reviewed and Quality Assurance Reviewed

Acceptance WP Leader Accepted and/or Coordinator Accepted
EC Project Officer Beatrice Plazotta

HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement no 856632

Ref. Ares(2022)3351751 - 30/04/2022

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 74

Contributing Partners
Partner
Acronym

Role Author(s)

NUIG Lead Beneficiary Eoin Jordan
Yasar Khan
Martin Serrano
Alex Acquier

Revision History

Version III Date Partner(s) Description
2.1 2021-09-20 NUIG ToC Version III reviewed
2.2 2021-09-25 NUIG, N OVA ToC with Final APIs and Implementation
2.3 2021-10-10 NUIG TOC contributions on Extensions
2.4 2021-10-15 NUIG Docker version Integration of CI/CD

Process and implementation
2.5 2021-11-20 NUIG Semantic Engine Documentation

Final version re-organised
2.6 2021-12-25 NUIG Executive Abstract Final version, final edits

on Section 3, Section 5, and Section 6
2.7 2021-02-15 NUIG Section 2 and Section 4 Comments and

Section 1 and Section 7 final edits
2.8 2021-04-10 NUIG, INNOV Pre-Final Version for Internal Review
2.9 2021-04-30 NUIG, GFT Version with Quality Assurance
3.0 2021-04-30 NUIG Version for Submission

Version II Date Partner(s) Description
1.1 2021-03-10 NUIG ToC Version reviewed
1.2 2021-03-15 NUIG, N OVA Updated ToC with Improved APIs and

first Implementation
1.3 2021-04-10 NUIG Updated TOC contributions
1.4 2021-04-10 NUIG Integration of CI/CD Process

and implementation
1.5 2021-05-15 NUIG Additional contributions on

Semantic Engine Documentation
1.6 2021-06-20 NUIG Updates in Executive Abstract, Section 4,

Section 5 and Section 6
1.7 2021-07-15 NUIG Contributions in Section 5 and Section 6
1.8 2021-07-20 NUIG Contributions in Section 7
1.9 2021-08-21 NUIG, INNOV Pre-Final Version for Internal Review
1.95 2021-08-30 NUIG, LINX Version with Quality Assurance
2.0 2021-08-30 NUIG Version for Submission

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 74

Version I Date Partner(s) Description
0.1 2020-08-08 NUIG ToC Version
0.2 2020-08-08 NUIG, N OVA Updated ToC with requested contributions

Standard Vocabularies from Stakeholders
on Hold until new online events are
organised

0.3 2020-09-09 NOVA Updated contributions
0.4 2020-10-10 NUIG Integration of contributions

Vocabularies form D4.1 integrated
0.5 2020-11-11 NUIG Additional contributions on FIBO, FIGI and

LKIF vocabularies and taxonomies
0.6 2020-11-11 NUIG Updates in Section 1,

Section 3 and Section 4
0.7 2020-12-20 NUIG Contributions in Section 4 and Section 5
0.8 2020-12-23 NUIG Final Contributions in Section 5
0.9 2020-12-23 NUIG, INNOV First Version for Internal Review
0.95 2020-12-23 NUIG, LINX Version for Quality Assurance
1.0 2020-12-23 NUIG Version for Submission

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 74

Executive Summary

Semantics Stream Analytics Engine – SeSA-ME Version III

This deliverable is the third version of the INFINITECH Semantics Streams Analytics Engine (SeSA-
ME) and the related tools for enabling semantic data exchange. In this final version of this
deliverable the final design architecture and the design specifications are reviewed and described
in detail and parts of the previous deliverables are referred in order to make the three doc8ments
complementary. This deliverable includes the specification and implementation of the semantics
engine from previous deliverables to also make this final deliverable consistent with the design and
to be able to identify the improvements, the feedback from stakeholders after testing SeSA-ME
semantic engine in the context of pilot use cases, all this activity is part of the Task 4.2 in the WP4.

The Semantic Engine APIs descriptions have been included in this version to clearly identify the
services that each APIs is offering and also to provide the full alignment with the online tools,
providing the structure of step by step procedure in how to achieve semantic data interoperability.
This document is the third version that is considered as final and as such it includes all the related
information that is relevant from previous versions to make this final version a self-contain
document that can be used for further designs, extensions and deployments.

In this deliverable the prototype provided and documented is a reference implementation that was
improved following general requirements coming from the study and purposes at INFINITECH pilot
level following stakeholder’s requirements and also from particular domains where the use of a
semantic engine for mashup building with semantic interoperability capabilities. The deliverable
includes references to previous versions where the implementation of the SeSA-ME component was
provided, in this version the open source implementation, additionally to the docker version, that
can be used when data sharing and data exchange is required and when there is a need to install
the semantic engine tools instead of using it as a service is provided.

The prototype implementation from period I review and its extensions towards including feedback
from stakeholders and pilots was done taking into consideration the progress of the project with
the stakeholders from the financial sector and their data models (i.e. mainly banking data models)
which reported the creation of two new ontologies that are considered necessary to be included in
the graph data model and also in the set of final APIs that were initially planned to be used.

The change of some of the pilots and the recent start o tow new ones required to follow the same
process to be able to introduce semantics and stream data services in the final version based on the
pilot re-focus and their objectives and thus new vocabularies were updated. The introduction of
these new pilots generated the need to delay the submission of the final version, however this delay
did not affect the overall progression of the project because the involvement of re-focused pilots
and their stakeholders yet will run for few months later and also the extensions of the project alike
the pilot’s stakeholders validation are yet in time. The delay in the submission of the final version of
this deliverable was informed to the coordination and agreed amongst the consortium as informed
in the WP4 online meetings and the general Assembly of the INFINITECH project.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 74

Semantics Stream Analytics Engine - Version II

In the second version of this deliverable the INFINITECH Semantics Streams Analytics Engine (SeSA-
ME) version II was enhanced following the new requirements exposed form the inclusion of
identified needs form the pilot use cases a set of new APIS was implemented in order to provide the
alternative to perform more analytics services and facilitate the visualisation of results.

In the second version of the deliverable we introduced the INFINITECH Graph Data Model, the
Semantic Annotator-Middleware Pre-Processing Layer for FinTechs (SAMPLE-Fin) procedure and the
Semantic validator. The improvements can be listed as follow:

(a) The inclusion of new APIs, implementation and specifications, for registering and
unregistering data sources is implemented and tested, and

(b) to enable the semantic interoperability by using running query APIs and an executed
running APIs to facilitate the access and manipulation of data for post processing
analytics.

Semantics Stream Analytics Engine - Version I

In the first version of this deliverable the INFINITECH Semantics Streams Analytics Engine (SeSA-ME)
and the related tools for enabling semantic data exchange were introduced, The SeSA-ME and its
tool are based on the development of an interoperability (ontology-based) database/registry
supporting linking of diverse systems and datasets based on shared semantics, as well as
semantically interoperable analytics.

The Semantic Engine is an extension of the Super Stream Collider (SSC) tool, which provides a set of
web-based interfaces and tools for building data mashups combining semantically annotated Linked
Stream and Linked Data sources into easy-to-use data mashups for applications. The SeSA-ME
system includes tools along with a visual SPARQL query editor using Swagger APIs and visualization
tools for novice users while supporting full access and control over the data mashups for expert
users. Tied with the development of the SeSA-ME platform is the development and deployment of
the INFNITECH Graph Data Model which enables the support for both the design and deployment
of stream-based web applications in a very simple and intuitive way and the analytics services using
stream-based applications and services.

In the first version of the deliverable we also introduce the INFINITECH Graph Data Model as an
Ontology or set of Standards Ontologies:

(a) to model and represent Finance and Insurance concepts with additional concepts in related
relevant areas – e.g., from the Security Transactions domain, Security and Privacy domain
– within the INFINITECH project stakeholders,

(b) to enable the semantic interoperability between Internet-connected objects for Finance
and Insurance applications in diversity of applications and services settings, and

(c) to enable the application of analytics services and reasoning algorithms for seamless
automated information exchange for more complex services and combined applications.

INFINITECH Graph Data Model is composed by following Core ontology standards, such as FIBO, FIGI
and LKIF standards and we bootstrap the implementation and deployment of the Semantic Analytics
Engine from those existing efforts towards the ontological descriptions of concepts, applications
and online services, etc. relevant for the INFINITECH project pilots.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 74

Table of Contents

1 Introduction .. 10

1.1 Objective of the Deliverable .. 10

1.2 Insights from other Tasks and Deliverables ... 11

1.3 Structure .. 11

2 INFINITECH Graph Data Models Online Tool ... 13

2.1 Deployment ... 13

2.2 Deployment of New Changes ... 13

2.3 Configuring Insight Hosted portal to INFINITECH Domain ... 14

3 INFINITECH Data Pack ... 16

4 Semantic Annotator-Middleware Pre-processing Layer for FinTechs - SAMPLE-FIN 20

4.1 Data Transformation Guide ... 20

4.2 Step 1: Selecting Ontologies .. 20

4.2.1 FIBO .. 20

4.2.2 FIGI .. 20

4.2.3 LKIF ... 21

4.2.4 INFINITECH Core ... 21

4.3 Step 2: Mapping Native Data to Selected Ontologies .. 21

4.3.1 RML: RDF Mapping language .. 21

4.3.2 RML Editor .. 22

4.3.3 R2RML: RDB to RDF Mapping Language ... 22

4.4 Step 3: Generating RDF .. 22

4.4.1 RMLMapper .. 23

4.4.2 Step 4: Making data queryable ... 23

4.4.3 Step 5: Data Transformation Example .. 23

4.4.4 MAPPINGS .. 24

4.4.5 RDF DATA .. 24

5 Infinitech Semantic Validator .. 25

5.1 Deployment ... 25

6 SeSA-ME Final Specifications and Implementation ... 26

6.1 SeSA-ME Architecture .. 26

6.1.1 Source Selection ... 26

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 74

6.1.2 Query Planner ... 28

6.1.3 Query Builder .. 30

6.1.4 Query Executor ... 31

6.1.5 Stream Processor .. 33

6.1.6 Access Policy Framework .. 34

6.2 SeSA-ME APIs ... 36

6.2.1 Static Data APIs – Version I ... 36

6.2.1.1 Know Your Customer (KYC) Profiler .. 36

6.2.1.1.1 KYC Data Providers ... 36

6.2.1.1.2 KYC Data Consumers .. 38

6.2.1.1.3 Identity Verification ... 46

6.2.1.1.4 Business Verification .. 51

6.2.2 Streaming Data APIs – Version I ... 55

6.2.2.1 Stream Registration .. 56

6.2.2.1.1 Register for Streams API .. 56

6.2.3 SeSA-ME New APIS Implementation – Version II ... 57

6.2.3.1 Stream Registration II ... 57

6.2.3.1.1 Unregister Data Source API .. 57

6.2.3.1.2 Run Query API .. 59

6.2.3.1.3 Run Query Plan API .. 61

7 SeSA-ME Continuous Integration/Continuous Development ... 68

7.1 SeSA-ME Engine Development .. 68

7.1.1 Run SeSA-ME Engine ... 68

7.1.2 Build SeSA-ME Engine ... 68

7.2 Deployment using Docker .. 68

7.3 SeSA-ME Engine APIs ... 68

7.4 SeSA-ME Engine Deployment .. 69

7.4.1 SeSA-ME Engine Project Structure .. 69

7.4.2 Dependencies List ... 69

7.4.3 Docker File .. 71

8 Conclusions ... 72

9 References ... 73

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 74

List of Figures

FIGURE 1. INFINITECH GRAPH DATA MODELS ONLINE TOOL FILES STRUCTURE ... 15
FIGURE 2. INFINITECH GRAPH DATA PACK .. 19
FIGURE 3. SEMANTIC STREAM ANALYTICS MIDDLEWARE-ENGINE ARCHITECTURE ... 26
FIGURE 4. SEMANTIC STREAM ANALYTICS MIDDLEWARE-ENGINE API SERVICES .. 36

List of Tables

TABLE 1: FIBO USEFUL LINKS .. 20
TABLE 2: FIGI USEFUL LINKS ... 20
TABLE 3: LKIF USEFUL LINKS ... 21
TABLE 4: INFINITECH CORE USEFUL LINKS ... 21
TABLE 5: RDF MAPPING LANGUAGE USEFUL LINKS .. 22
TABLE 6: RML EDITOR USEFUL LINKS ... 22
TABLE 7: RDB 2 RDF MAPPING LANGUAGE USEFUL LINK .. 22
TABLE 8: RML MAPPER USEFUL LINK ... 23
TABLE 9: TRIPLE STORES USEFUL LINKS ... 23
TABLE 10: EXAMPLE CUSTOMER TABLE .. 23
TABLE 11: DATA MAPPING EXAMPLE ... 24
TABLE 12: EXAMPLE RDF DATA ... 24
TABLE 13: SOURCE SELECTION - COMPONENT DESCRIPTION AND API DOCUMENTATION .. 26
TABLE 14: QUERY PLANNER – COMPONENT DESCRIPTION AND API DOCUMENTATION .. 28
TABLE 15: QUERY BUILDER - COMPONENT DESCRIPTION AND API DOCUMENTATION ... 30
TABLE 16: QUERY EXECUTOR - COMPONENT DESCRIPTION AND API DOCUMENTATION ... 31
TABLE 17: STREAM PROCESSOR - COMPONENT DESCRIPTION AND API DOCUMENTATION ... 33
TABLE 18: ACCESS POLICY FRAMEWORK - COMPONENT DESCRIPTION AND API DOCUMENTATION .. 34
TABLE 19: EXAMPLE DATA SOURCE REGISTRATION INFORMATION ... 37
TABLE 20: EXAMPLE REGISTER DATA SOURCE FUNCTIONALITY AND URL NOTATION ... 37
TABLE 21: EXAMPLE KYC DATA CONSUMER METHOD USING JSON SCHEMA ... 37
TABLE 22: EXAMPLE TEMPLATE FOR IDENTITY VERIFICATION ... 38
TABLE 23: EXAMPLE TEMPLATE FOR BUSINESS VERIFICATION ... 39
TABLE 24: EXAMPLE GET TEMPLATE FUNCTIONALITY AND URL NOTATION ... 39
TABLE 25: EXAMPLE IDENTITY VERIFICATION METHOD USING JSON SCHEMA ... 39
TABLE 26: EXAMPLE GET LIST OF FIELDS FUNCTIONALITY AND URL NOTATION .. 43
TABLE 27: EXAMPLE BUSINESS VERIFICATION METHOD USING JSON SCHEMA ... 43
TABLE 28: EXAMPLE VERIFY CUSTOMER IDENTITY FUNCTIONALITY AND URL NOTATION ... 46
TABLE 29: EXAMPLE VERIFY CUSTOMER IDENTITY METHOD USING JSON SCHEMA ... 46
TABLE 30: EXAMPLE VERIFY BUSINESS API FUNCTIONALITY AND URL NOTATION ... 51
TABLE 31: EXAMPLE VERIFY BUSINESS METHOD USING JSON SCHEMA ... 51
TABLE 32: EXAMPLE REGISTER FOR STREAMS API FUNCTIONALITY AND URL NOTATION ... 56
TABLE 33: EXAMPLE REGISTER FOR STREAMS METHOD USING JSON SCHEMA ... 56
TABLE 34: EXAMPLE FOR UNREGISTER DATA SOURCE API FUNCTIONALITY AND URL NOTATION ... 58
TABLE 35: EXAMPLE UNREGISTER A DATA SOURCE METHOD USING JSON SCHEMA .. 58
TABLE 36: EXAMPLE FOR UNREGISTER DATA SOURCE API FUNCTIONALITY AND URL NOTATION ... 59
TABLE 37: EXAMPLE RUNS A SPARQL QUERY ON THE SPECIFIED DATA SOURCE ... 59
TABLE 38: EXAMPLE FOR RUN QUERY API FUNCTIONALITY AND URL NOTATION ... 62
TABLE 39: EXAMPLE RUN A QUERY PLAN ON BOTH STATIC AND STREAMING DATA SOURCES ... 62
TABLE 40: THE SESA-ME COMPONENT HAS THE FOLLOWING STRUCTURE: ... 69
TABLE 41: SESA-ME DEPENDECIES ... 69
TABLE 42: DOCKER FILE ... 71

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 74

Abbreviations/Acronyms

AI Artificial Intelligence
CQELS Continuous Query Evaluation over Linked Streams
DnS Descriptions and Solutions
DOI Digital Object Identifier
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DUL DOLCE+DnS Ultralite
FIBO Financial Industry Busines Ontology
FIGI Financial Instrument Global Identifier
FOAF Friend of a Friend
GIS Geographic information system
GSN Global Sensor Networks
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
ICT Information and Communications Technology
LD Linked Data
LKIF Legal Knowledge Interchange Format
LOD Linking Open Data
MIME Multipurpose Internet Mail Extensions
NOAA National Oceanic and Atmospheric Administration
OGC Open Geospatial Consortium
OMG Object Management Group
OWL Web Ontology Language
RDF Resource Description Framework
RDFS RDF Schema
RFS Request for Service
SaS Sensing-as-a-Service
SIOC Semantically Interlinked Online Communities
SLA Service Level Agreement
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
TaS Traceability-as-a-Service
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifiers
URN Uniform Resource Name
USB Universal Serial Bus
W3C World Wide Web Consortium
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 74

1 Introduction

This deliverable is the third version of the INFINITECH Semantics Streams Analytics Engine (SeSA-
ME) specification, implementation and the related implemented tools for enabling semantic data
exchange. In this version of this deliverable the implementation of the engine and the semantic
online tools have been produced and improved after the feedback received from stakeholders
regarding the specifications provided in version I and version II.

The Semantic Stream Analytics Middleware-Engine (SeSA-ME) is an extension of the Super Stream
Collider (SSC) platform and tools. The SeSA-ME system includes tools along with a visual SPARQL
query editor using Swagger APIs and visualization tools for novice users while supporting full access
and control over the data mashups for expert users. The development of the SeSA-ME platform
requires the use of an associated data model, thus the INFINITECH data model and its deployment
is also an important part in this deliverable. The INFINITECH Graph Data Model enables supporting
both the design and deployment of stream-based web applications in a very simple and intuitive
way and the extension to analytics services using stream-based applications and services.

In this deliverable the specification are focused on the deployment of the Semantic Engine and the
semantic tools, thus the previous deliverables together with this final deliverable compose the set
of documents that put together not only the design and implementation efforts but also the
experiences and improvements of the SeSA-ME engine and its associated semantic services.

1.1 Objective of the Deliverable
This deliverable reports the final set of specifications of the Semantic Stream Analytics Engine (SeSA-
ME) as a framework and the online tools for interoperability and data exchange. This document is
the third version of three, at the first one the design and specification were providing taking in
consideration the initial requirements and specifications from the super stream collider. In the
second version of this deliverable the basic streaming data services and tools for data
interoperability and their use in particular use cases addressing pilots requirements were described.
In this third version of the deliverable the implementation and deployment of the online tools and
the SeSA-ME engine are provided, following the feedback received and the INFINITECH way
references to make the implementation as simple as possible to install. Following the INFINITEHC
way there is a CI/CD process that aims to ensure the replicability and easy integration of the SeSA-
ME engine within other solutions and platforms. The SeSA-ME engine implementation documented
in this third deliverable is the reference implementation considered final and that was compared
against the general requirements from the stakeholders in the pilots of the INFINITECH project.

The version I and version II of this document live documents aggregating information making them
self-contained and with the objective to provide the evolution of the implementation, while this
version is focused on complement them by focusing in describing the way to deploy and instantiate
the semantic tools. The need to have the semantic tools online derivates from (a) the requirements
from the use case descriptions, i.e. the involved concepts and relationships between them identified
in Task 4.1, (b) the set of related ontologies relevant to INFINITECH identified in task 4.2 as reported
in their deliverables and (c) the relevance of some terms used in different domains that can be used
for exchange data and ma it interoperable.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 74

1.2 Insights from other Tasks and Deliverables
This deliverable is an ultimate updated report that complement the previous two deliverables this,
document describes the implementation of the semantic tools that make the semantic engine
functional and at the same time easy to deploy and easy to use, this deliverable also make
references to other parts in previous deliverables and particularly to the online frameworks that
facilitates the use of the data model principles described in the Deliverable D4.1 and D4.2 already
as initial design and reviewed version of the SeSA-ME engine implementation.

This deliverable extends the functionalities and capabilities about the INFINITECH Semantic
Interoperability Framework, introduced and explained in the Deliverable D4.1 and Deliverable 4.2,
where basic data models are described and the implementation is based in simulated data. In this
deliverable the specifications correspond to test that uses synthetic data as a more realistic
approach to the final data sets that can be found in financial and insurance sectors.

1.3 Structure
The overall content of this document focuses on providing the final specifications that complements
the implementation, deployment and testing of the SeSA-ME and the semantic online tools. The
previous versions of this document provided the comprehensive analysis of the state of the art on
semantic modelling and the necessary background for initiating people in the use of semantic
technologies and also provided overall information around related areas to graph data modelling,
stream processing and data mashups building.

Section 2 outlines the graph data model online tool, it provides the deployment process facilitating
the use of the semantic models and include the new changes from version I and II, it also describes
the way to configure the online portal that currently is being used in the INFINITECH project.

Section 3 reviews the data pack. This section mainly focus on providing the current implementation
of the existing ontologies related to the financial and insurance sectors that are relevant for the
INFINITECH project. It also focuses on adding the semantics model that complements the finance
sector addressing the overview of the INFINITECH Core and other most used standards.

Section 4 provide the specification to the SAMPLE-FIN online tools for supporting the graph data
pack where the Financial Industry Busines Ontology (FIBO) from the EDM council, the Financial
Instrument Global Identifier (FIGI), an established global standard issued under the guidelines of the
Object Management Group (OMG) and the Legal Knowledge Interchange Format (LKIF) Ontologies
are included as part of the necessary online tools that SeSA-ME uses to operate.

Section 5 provide the specifications for the deployment of the semantic validator, this section
focuses on describing the process to verify the model once it is built. This section do not describes
how to use the model instead how to deploy the semantic validator and how it helps to refine and
identify possible flows in the data model before even this become operative and used.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 74

Section 6 includes the SeSA-ME Specification. The rationale to include the specification in this
version is that designers and developers understand the use of the tools in a form of steps to achieve
the semantic interoperability. The design and implementation of SeSA-ME follows the
recommended best-effort practice to reuse design, implement and re-use existing, popular
ontologies/vocabularies as much as possible. The implementation of SeSA-ME corresponds to the
need to follow the process towards annotating data sets and be able to process it as data streams.

Section 7 is the documentation for the CI/CD process documenting the deployment and procedure
to allow developers and people interested in the use of the SeSA-ME component. The process to
Run and Build SeSA-ME is included and also the process to deploy it using a Docker File

Section 8 present the conclusions and present some pointers in how the INFINTECH SeSA-ME
component will follow the sandboxes design in the INFINITECH project and outlines the support of
pilots following the proposed methodology.

Finally Section 9 includes a list of relevant references that have been used along the three versions
of the document alike the ones used across this particular document.

This deliverable refers to section 4 in the Deliverable D4.2 Semantic Models and Ontologies II, where
INFINITECH Core Data Model & Semantic online tools are included, and also the section 5 where
the overall specifications are described. In this deliverable, even though sections have been taken
from other deliverables, this document is organised in the way that it incorporates the most relevant
design and implementation parts from the previous to deliverables as a way to make this final
version of the deliverable a self-contain document but that in a global view the three documents
are the overall complete set of specifications.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 74

2 INFINITECH Graph Data Models Online Tool

2.1 Deployment

The INFINITECH Graph Data Models Online Tools portal is deployed on the below server
(vmiot15) hosted in Insight:

Host: vmiot15.datascienceinstitute.ie
Username & Password: Create a JIRA ticket to get access to this server.

This portal is deployed on Tomcat Application Server on the path /var/lib/tomcat9/.

Username and Password for Tomcat Manager are admin and admin respectively.

2.2 Deployment of New Changes

If you make any changes to this portal, follow the below steps to deploy these changes to the online
server.

Step 1: Push the new changes to this code repository.

Step 2: Login to the Insight Server vmiot15 and go to the webapps folder within Tomcat using the
following command:

cd /var/lib/tomcat9/webapps/

Step 3: Go to the project folder within webapps:

cd /infinitech-data-models/

Step 4: Pull all the new changes using the following command:

git pull origin master

Step 5: Go to the following URL to view the deployed website.

http://vmiot15.datascienceinstitute.ie:8080/infinitech-data-models/

Step 6: (OPTIONAL) In case if tomcat needs restart, the following command can be used to restart
tomcat:

systemctl restart tomcat9

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 74

2.3 Configuring Insight Hosted portal to INFINITECH Domain

The INFINITECH Graph Data Models Online Tools portal is hosted on Insight server and the host URL
corresponds to Insight. To configure this portal to be served using INFINITECH domain name, we
have installed NGINX server as a reverse proxy.

The following steps were performed to install and configure NGINX server:

Step 1: Install NGINX Server on vmiot15 server.

Step 2: Disable the default virtual host, that is pre-configured when Nginx is installed via Ubuntu’s
packet manager apt:

unlink /etc/nginx/sites-enabled/default

Step 3: Go to the directory /etc/nginx/sites-available and create a reverse proxy
configuration file.

cd /etc/nginx/sites-available
nano reverse-proxy.conf

Step 4: Paste the following Nginx configuration in the configuration file created in the previous
step. The proxy server will now redirect all incoming connections on port 80 to the Apache Tomcat
Server, listening on port 8080.

server {
 listen 80;
 listen [::]:80;

 server_name graph-data-model.infinitech-h2020.eu;

 access_log /var/log/nginx/reverse-access.log;
 error_log /var/log/nginx/reverse-error.log;

 location / {
 proxy_pass http://127.0.0.1:8080/infinitech-data-models/;
 }

 location /infinitech-data-models/content/ontologies/ {
 proxy_pass http://127.0.0.1:8080/infinitech-data-
models/content/ontologies/;
}
}

Step 5: Copy the configuration from /etc/nginx/sites-available to /etc/nginx/sites-enabled. It is
recommended to use a symbolic link.

ln -s /etc/nginx/sites-available/reverse-proxy.conf /etc/nginx/sites-
enabled/reverse-proxy.conf

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 74

Step 6: Test the Nginx configuration file.

nginx -t

which will return the below output:

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

Step 7: Restart NGINX server:

service nginx restart

Step 8: Open a web browser on your local computer and paste the below url which will display
your web applications homepage.

http://graph-data-model.infinitech-h2020.eu/

The figure 1 below shows the distribution of the documentation in the public repository, this is the
structure that the files will have if the deployment is done following the steps as described above.

Figure 1. INFINITECH Graph Data Models Online Tool Files Structure

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 74

3 INFINITECH Data Pack

This section includes the online data pack specifications and details. The data model is crucial for
the operation for the Semantic Engine, thus the use of a online machine readable accessible tool is
accessible tool is considered relevant. The use of semantic technologies and particularly RDF
facilitates the use of RDF-based streams. RDFbased data allows to support the operators multiple
machines that uses the data model remotely. Furthermore, this interactive online tool facilitates
the easy comprehension and understanding of the data model organization and the data structures.
The data model online accessing process is leveraged by the online machine-readable files services
which is recommend using for reducing problems when different versions of the data model is
generated. INFINITECH Graph Data Model can be powered by using online semantic-enabled
accessing services in a similar way SPARQL endpoints act for Jena and Virtuoso semantic repositories
for example, where multiple instances can access the online data service and verify versioning and
at the same time get access to the metadata.

The following is the INFINITECH data pack used to access the online services:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
 <link rel="stylesheet" href="resources/primer.css" media="screen" />
 <link rel="stylesheet" href="resources/rec.css" media="screen" />
 <link rel="stylesheet" href="resources/extra.css" media="screen" />
 <link rel="stylesheet" href="resources/owl.css" media="screen" />
 <script src="resources/jquery.js"></script>
 <script src="resources/marked.min.js"></script>
 <script>
function loadHash() {

jQuery(".markdown").each(function(el){jQuery(this).after(marked(jQuery(this).text())).rem
ove()});
 var hash = location.hash;
 if($(hash).offset()!=null){
 $('html, body').animate({scrollTop: $(hash).offset().top}, 0);
 }
 }
 $(function(){
 loadHash();
 });
 </script>
 <title>Data Pack</title>
 <meta name="description" content="INFINITECH Data Pack" />
</head>

<body>

 <div class="container">

 <div class="head">

 <h1>INFINITECH Data Pack</h1>
 <h3>INFINITECH Best Practices For Data Modeling</h3>

 The <strong style="color: #272a64;">Data Pack is the set of files,
schemas and metadata
 model diagrams (Graphs) that represent the way the INFINITECH data is organised
and structured, it
 contains the metadata in .ttl format and also contains the metadata in two
different formats,

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 74

 <strong style="color: #272a64;">.json-ld and <strong style="color:
#272a64;">.owl
 to ensure the Data Pack is accessible to different communities.

 <h2>17 November 2020</h2>
 <dl>
 <dt>This version:1.0</dt>
 <dd></dd>
 </dl>
 <dt>Revision:</dt>
 <dd>1.0.0</dd>

<!-- <dl><dt>Author(s):</dt>
<dl><dt>Contributor(s):</dt>
<dl><dt>Download serialization:</dt> -->

<dd></dd>
<!-- <img
src="https://img.shields.io/badge/Format-JSON_LD-blue.svg" alt="JSON-LD" />
<img
src="https://img.shields.io/badge/Format-RDF/XML-blue.svg" alt="RDF/XML" />
<img
src="https://img.shields.io/badge/Format-N_Triples-blue.svg" alt="N-Triples" />
<img
src="https://img.shields.io/badge/Format-TTL-blue.svg" alt="TTL" /> -->
<dl><dt>License: </dt><a href="http://creativecommons.org/licenses/by/3.0/"
target="_blank"><img src ="https://img.shields.io/badge/License-Creative Commons
Attribution 3.0 -blue.svg" alt="http://creativecommons.org/licenses/by/3.0/">
<img
src="http://i.creativecommons.org/l/by/3.0/88x31.png" style="border-width:0"
alt="License">

</dd></dl><dl><dt></dt>

</dl>
<hr/>
</div>
<div class="status">
<div>
INFINITECH Semantic Model - Data Pack
</div>
</div>
<section id="abstract">
 <p>The current complete Data Pack can be found in the table below:</p>
</section>

<div>
 <table class="table">
 <tbody>
 <tr>
 <td>INFINITECH Core Ontology</td>
 <td></td>
 </tr>
 <tr>
 <td><a href="../ontologies/INFINITECH-Core/infinitech-
core.ttl">infinitech-core.ttl</td>
 <td>(Ontology: OWL)</td>
 </tr>
 <tr>
 <td><a href="../ontologies/INFINITECH-Core/infinitech-
core.jsonld">infinitech-core.jsonld</td>
 <td>(Ontology: JSON-LD)</td>
 </tr>
 <tr>
 <td><a href="../ontologies/INFINITECH-Core/infinitech-
core.svg">infinitech-core-diagram.svg</td>
 <td>(Vector Graphics)</td>
 </tr>
 <tr>
 <td>infinitech-core-ontology</td>

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 74

 <td>(Documentation)</td>
 </tr>
 </tbody>
 </table>

 <table class="table">
 <tbody>
 <tr>
 <td>FIGI Ontology</td>
 <td></td>
 </tr>
 <tr>
 <td>figi-ontology.ttl</td>
 <td>(Ontology: OWL)</td>
 </tr>
 <tr>
 <td>figi-
ontology.jsonld</td>
 <td>(Ontology: JSON-LD)</td>
 </tr>
 <tr>
 <td>figi-ontology-
diagram.svg</td>
 <td>(Vector Graphics)</td>
 </tr>
 <tr>
 <td>figi-ontology</td>
 <td>(Documentation)</td>
 </tr>
 </tbody>
 </table>

 <table class="table">
 <tbody>
 <tr>
 <td>LKIF Ontology</td>
 <td></td>
 </tr>
 <tr>
 <td>lkif-ontology.ttl</td>
 <td>(Ontology: OWL)</td>
 </tr>
 <tr>
 <td>lkif-
ontology.jsonld</td>
 <td>(Ontology: JSON-LD)</td>
 </tr>
 <tr>
 <td>lkif-ontology-
diagram.svg</td>
 <td>(Vector Graphics)</td>
 </tr>
 <tr>
 <td>lkif-ontology</td>
 <td>(Documentation)</td>
 </tr>
 </tbody>
 </table>

 <table class="table">
 <tbody>
 <tr>
 <td>FIBO Ontology</td>
 <td></td>
 </tr>
 <tr>
 <td>fibo-ontology.ttl</td>
 <td>(Ontology: OWL)</td>
 </tr>
 <tr>

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 74

 <td>fibo-ontology.jsonld</td>
 <td>(Ontology: JSON-LD)</td>
 </tr>
 <tr>
 <td>fibo-ontology-diagram.svg</td>
 <td>(Vector Graphics)</td>
 </tr>
 <tr>
 <td>fibo-ontology</td>
 <td>(Documentation)</td>
 </tr>
 </tbody>
 </table>
</div>

</body>
</html>

The figure 2 below shows the distribution of the documentation in the public repository, this is the
structure that the files will have if the deployment is done following the steps as described above.

Figure 2. INFINITECH Graph Data Pack

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 74

4 Semantic Annotator-Middleware Pre-processing
Layer for FinTechs - SAMPLE-FIN

4.1 Data Transformation Guide
The following steps are for the purpose of guiding people to transform their data from native format to RDF
format. Each step also lists a set of tools which can be used to perform a specific task.

4.2 Step 1: Selecting Ontologies
If you want to transform your data to RDF format, the first thing you need to do is to find an ontology which
can be used to model your native data in RDF format.

In case of the INFINITECH project, there are several ontologies available. Below is the list of these ontologies.

4.2.1 FIBO

The Financial Industry Business Ontology (FIBO) defines the sets of things that are of interest in financial
business applications and the ways that those things can relate to one another. In this way, FIBO can give
meaning to any data (e.g., spreadsheets, relational databases, XML documents) that describe the business of
finance.

Table 1: FIBO Useful Links

Useful Links

External INFINITECH

Website FIBO FIBO Docs

OWL Files FIBO OWL Files FIBO Files

4.2.2 FIGI

FIGI is a Financial Industry Global Instrument Identifiers (FIGI) Ontology.

Table 2: FIGI Useful Links

Useful Links

External INFINITECH

Website FIGI FIGI Docs

Files

FIGI Files

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 74

4.2.3 LKIF

The Legal Knowledge Interchange Format (LKIF) is an OWL ontology of legal concepts, allowing legal
knowledge bases to be represented in OWL.

Table 3: LKIF Useful Links

Useful Links

External INFINITECH

Website Project Website LKIF Docs

LKIF Files LKIF Github LKIF FIles

Publications LKIF Core Ontology

4.2.4 INFINITECH Core

INFINITECH Core defines alignment between FIBO, FIGI & LKIF in a formal way.

Table 4: INFINITECH Core Useful Links

Useful Links

Website INFINITECH Core

INFINITECH Core Files INFINITECH Core FIles

4.3 Step 2: Mapping Native Data to Selected Ontologies
When you have selected the ontologies which can be used to model your data, the next step is to specify
mapping from entities and attributes in the native data format to entities and attributes in the selected
ontologies.

There are some standard mapping languages available which can be used to specify these mappings, such as
RML, R2RML etc.

4.3.1 RML: RDF Mapping language

RML, a generic mapping language, based on and extending R2RML. The RDF Mapping language (RML) is a
mapping language defined to express customized mapping rules from heterogeneous data structures and
serializations to the RDF data model. RML is defined as a superset of the W3C-standardized mapping language
R2RML, aiming to extend its applicability and broaden its scope, adding support for data in other structured
formats. RML follows exactly the same syntax as R2RML; therefore, RML mappings are themselves RDF
graphs.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 74

Other than relational databases, currently you can define mappings from sources, such as CSV, TSV, XML and
JSON to RDF. Such mappings describe how existing data can be represented using the RDF data model.

Table 5: RDF Mapping Language Useful Links

Useful Links

Website RML

Specifications RML: RDF Mapping Language

4.3.2 RML Editor

The RMLEditor offers a Graphical User Interface (GUI) to enable data publishers, who are domain experts,
to model knowledge derived from multiple, heterogeneous data sources. The RMLEditor uses RML as its
underlying mapping language, offering a uniform GUI to its users to edit rules.

Table 6: RML Editor Useful Links

Useful Links

Website RMLEditor

Online Tool: RMLEditor Web Version

4.3.3 R2RML: RDB to RDF Mapping Language

R2RML is a W3C standard to express customized mappings from relational databases to RDF datasets. Such
mappings provide the ability to view existing relational data in the RDF data model, expressed in a structure
and target vocabulary of the mapping author's choice. R2RML mappings are themselves RDF graphs and
written down in Turtle syntax.

Table 7: RDB 2 RDF Mapping Language Useful Link

Useful Links

Website R2RML: RDB to RDF Mapping Language

4.4 Step 3: Generating RDF
When you have the mappings in place, then the next step is to generate RDF data from native data based on
the mappings specified in the previous step.

The following tools can be used to transform your data to RDF:

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 74

4.4.1 RMLMapper

The RMLMapper executes RML rules to generate Linked Data. It is a Java library, which is available via the
command line.

Table 8: RML Mapper Useful Link

Useful Links

Website RML Mapper

4.4.2 Step 4: Making data queryable

When the data is transformed to RDF successfully, the next step is to enable querying on the RDF data in
order to make it easily accessible. In order to do this, you need to select a triple store and upload your data
to it. The following triple stores can be used to make your data queryable.

Table 9: Triple Stores Useful Links

Useful Links

Virtuoso Virtuoso

Jena Fuseki Jena Fuseki

4.4.3 Step 5: Data Transformation Example

This section will explain mapping example data to an ontology and then how the transformed RDF data would
look like.

Below is an example database table, i.e. CUSTOMER_TABLE, which contains records of customers. To
transform this table to RDF format, you need to create mappings from this table to your selected ontology.

Table 10: Example Customer Table

CUSTOMER_TABLE

CUSTOMER_ID FIRST_NAME LAST_NAME DATE_OF_BIRTH

1 John Smith 14-04-1985

2 James Oliver 02-11-1974

Below is an example of mappings generated for transforming the above database table to RDF format.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 74

4.4.4 MAPPINGS

Table 11: Data Mapping Example

Example Mapping

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix fibo: <https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/>.

<#CustomerMap>
 rr:logicalTable [rr:tableName "CUSTOMER_TABLE"];
 rr:subjectMap [
 rr:template "http://data.example.com/customer/{CUSTOMER_ID}";
 rr:class ex:Person;
];

 rr:predicateObjectMap [
 rr:predicate ex:hasFirstName;
 rr:objectMap [rr:column "FIRST_NAME"];
];

 rr:predicateObjectMap [
 rr:predicate ex:hasSurname;
 rr:objectMap [rr:column "LAST_NAME"];
];

 rr:predicateObjectMap [
 rr:predicate ex:hasDateOfBirth;
 rr:objectMap [rr:column "DATE_OF_BIRTH"];
].

The example RDF data generated by transforming the database table, i.e. “CUSTOMER_TABLE” using the
above mappings is shown below.

4.4.5 RDF DATA

Table 12: Example RDF Data

Example RDF Data

@prefix it: <http://data.example.com/customer/> .
@prefix fibo: <https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/>.

it:1 a fibo:Person ;
 fibo:hasFirstName "John" ;
 fibo:hasSurname "Smith" ;
 fibo:hasDateOfBirth "14-04-1985" ;

it:2 a fibo:Person ;
 fibo:hasFirstName "James" ;
 fibo:hasSurname "Oliver" ;
 fibo:hasDateOfBirth "02-11-1974" ;

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 74

5 Infinitech Semantic Validator
The building process of Semantic Data Streams and Mashups requires a basic know-how on data
modelling and processing, the previous deliverables provide the stat of the art and a complete
analysis. This section focuses on describing the next process when a semantic model is built, and
that constitutes an important part of the modelling process. The semantic validation helps to refine
and identify possible flows in the data model before even this become operative and used in the
semantic engine. The semantic validator does not influence the design and implementation of the
Semantics Streams Analytics Engine (SeSA-ME) architecture, but it contributes by verifying all the
terms and vocabularies alike if the defined relationships are properly included and thus the design
principles for high level architectures can be addressed. It is highly recommended to use the
semantic validator to validate the different terms and concepts introduced but also to understand
the use of the semantics in the context of the INFINITECH Graph Data model construction.

5.1 Deployment

The Semantic Validator is deployed on the below server (vmiot15) hosted in Insight:

Host: vmiot15.datascienceinstitute.ie
Username & Password: Create a JIRA ticket to get access to this server.

The Semantic Validator is deployed on Tomcat Application Server on the path
/var/lib/tomcat9/.

Username and Password for Tomcat Manager are admin and admin respectively.

Follow the below steps to deploy Semantic Validator to the online server.

Step 1: Make a war file of Semantic Validator.

Step 2: Login to the Insight Server vmiot15 and go to the webapps folder within Tomcat using the
following command:

cd /var/lib/tomcat9/webapps/

Step 3: Copy the war file of Semantic Validator to the webapps folder within Tomcat Server:

Step 4: Restart Tomcat Server:

systemctl restart tomcat9

Step 5: Go to the following URL to test the Semantic Validator.

http://graph-data-model.infinitech-h2020.eu/validate.html

The graphical interface you see when click on the above link is part of the Graph Data Model
Online Tools and the interface code resides in the Graph Data Model Online Tools repository.

This code repository is for the Semantic Validator Service.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 74

6 SeSA-ME Final Specifications and Implementation
INFINITECH devises a semantic interoperability solution based on a combination of concepts from
FIBO, FIGI and LKIF as well as based on the selective enhancement of these ontologies with new
concepts as needed by the project’s pilots use cases. SeSA-ME solution is designed in the form to be
a shared semantics solution, which will take advantage of transformation of data schemas to our
common INFINITECH semantics.

6.1 SeSA-ME Architecture
Leveraging on NUIG’s Super Stream Collider (SSC) solution, the INFINITECH project is providing the
means for the deployment and provisioning of semantic reasoning and analytics capabilities in
massive, distributed computing systems (i.e., large scale cloud data centres such as those hosting
the INFINITECH testbeds) by implementing the Semantics Stream Analytics Middleware-Engine
(SeSA-ME). In this way, INFINITECH’s SeSA-ME aims for offering capabilities for live semantic data
processing and on-demand access to smart semantic analytics services. Figure 14 depicts the SeSA-
ME Architecture where, it is observed the different components and how it interacts with data
sources alike it provides data sharing applications.

Figure 3. Semantic Stream Analytics Middleware-Engine Architecture

The high-performance semantic stream analytics functionalities of the SeSA-ME component are
made available through Open APIs and will be deployed on the project’s sandboxes and testbeds as,
in this section the specification for the different blocks of the SeSA-ME engine are described.

6.1.1 Source Selection

Table 13: Source Selection - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-130-S

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 74

Component Name Source Selection

Description This component is responsible for selecting data sources which could
potentially return results for a given request. Usually there are many data
sources available to get data from but all of them might not be relevant for
the request. Hence sending requests to all of them would incur extra load
on the data sources and the SeSA-ME engine and would cause delay in
response to the request. So, identifying relevant data sources for a request
is important to avoid any delays and unnecessary requests to data sources.
The source selection process is performed based on the availability of pre-
processed information, e.g., meta data, from data sources or availability of
mechanisms to inquire about information from data sources at run-time.
The identification of selecting relevant sources for a request will also
contribute to building requests for each individual data source.

Icon N/A

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

Request in JSON format, list of data sources and meta-data of data sources.

Output (Produced
by the Component)

List of relevant data sources against data requested.

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 74

MARKETPLACE Yes if it will be part of the Marketplace

Microservice Yes if it is a dockerized microservice component

Endpoint/REST
API

To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

6.1.2 Query Planner

Table 14: Query Planner – Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-131-S

Component Name Query Planner

Description The query planner identifies the order in which the queries will be
executed on the relevant data sources. This step is performed after the
source selection step. The inputs from the source selection component is
utilised to plan the queries, their order and the data source on which each
query will be executed.

Icon N/A

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 74

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

List of queries and list of data sources on which the query will be executed.

Output (Produced
by the Component)

Query plan

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

N/A

Detailed
Documentation

N/A

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 74

6.1.3 Query Builder

Table 15: Query Builder - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-134-S

Component Name Query Builder

Description As its name suggests, the query builder will build the actual queries, as
identified in the query planning step, from existing query templates. For
example, customer profile building queries.

Icon N/A

IP Owner & Partner in
Charge

NUIG

INFINITECH
Component Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by the
Component)

Query Plan

Output (Produced by
the Component)

SPARQL query or CQELS or C-SPARQL query

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 74

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

6.1.4 Query Executor

Table 16: Query Executor - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-132-S

Component Name Query Executor

Description The query executor component will be responsible for executing the
queries generated based on the API templates on the desired data source.
For example, executing SPARQL query using Jena ARQ library on a data
source, e.g. triple store.

Icon N/A

IP Owner & Partner
in Charge

NUIG

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 74

INFINITECH
Component Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

SPARQL query and data source on which the query will be executed.

Output (Produced by
the Component)

Result set in JSON format.

Technology or
Platform to be used

 Java

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST API To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 74

6.1.5 Stream Processor

Table 17: Stream Processor - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-133-S

Component Name Stream Processor

Description This component will be responsible for managing RDF streams of data
coming from streaming data sources. It will execute queries on streaming
data and provide streams of output data to the requesting entity, based on
the frequency and time frame specified in the query. For example,
executing a CQEL or C-SPARQL query using a stream processing engine.

Icon N/A

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

C-SPARQL or CQELS query and data source on which the query will be
executed.

Output (Produced
by the Component)

Data streams in JSON format

Technology or
Platform to be used

Java.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 74

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST
API

To be defined

License To be defined

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

6.1.6 Access Policy Framework

Table 18: Access Policy Framework - Component Description and API Documentation

Attribute Documentation & Example

Component ID INF-DSM-135-S

Component Name Access Policy Framework

Description The access policy framework will be used to perform authorization of users
based on the access policy rules defined. This component works after the
authentication step which is not part of this. This component is composed
of user profiles and access policies. User profiles should be stored and
access policies on the underlying data based on the user profiles must be
defined, initialised and stored.

Icon N/A

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 74

IP Owner & Partner
in Charge

NUIG

INFINITECH
Component
Category

Data Semantics

IRA - BDVA Layer Data Processing

Input (Required by
the Component)

SPARQL or CQELS query, data source and user information.

Output (Produced
by the Component)

Boolean flag which will represent whether access is granted or denied.

Technology or
Platform to be used

 N/A

Part of INFINITECH
Core

Yes

MARKETPLACE Yes, it will be part of the Marketplace

Microservice Yes, it is a dockerized microservice component

Endpoint/REST
API

To be confirmed

License To be confirmed

Other Information /
Remarks

 N/A

Detailed
Documentation

N/A

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 74

6.2 SeSA-ME APIs
The high-performance semantic analytics functionalities of the project are made available through
Open APIs and will be deployed on the project’s sandboxes and testbeds as described in the
following sections. The APIs provided by SeSA-ME Engine are divided into two categories, namely
Static Data APIs and Streaming Data APIs.

Figure 4. Semantic Stream Analytics Middleware-Engine API Services

6.2.1 Static Data APIs – Version I

6.2.1.1 Know Your Customer (KYC) Profiler
Know Your Customer (KYC) is the process where businesses can verify the identity of their customer
to ascertain the legitimacy and credibility. The KYC process is mostly used by financial institutions,
such as banks, insurance companies etc. to verify their customers. This section describes RESTful
APIs provided by SeSA-ME Engine for the KYC use case.

There are two perspectives of KYC, one is KYC Data Consumer, the consumer’s perspective of KYC
services and the other is KYC Data Provider, the data provider’s perspective of KYC services. In the
former, financial institutions consume the KYC services provided to verify the identity of their
customers and in the later data providers provide their data to be used as a source for verifying the
identity of customers.

6.2.1.1.1 KYC Data Providers
This section describes the KYC APIs provided for the data providers, whose data can be used to verify
the identity of customers. To be able to become a data provider for KYC services, the data source
must get registered with SeSA-ME Engine.

6.2.1.1.1.1 Data Source Registration API
The data source registration API is used to register a data source with SeSA-ME engine for the
purpose of providing their data to be used for customer identity verification. The data source must

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 74

supply the required information to this API. This information includes attributes, such as “name”,
“type” and “params” for this data source. The “type” attribute specifies the type of data source,
e.g., SPARQL Endpoint, Data World Endpoint, Graph DB endpoint etc. The “params” attribute
specifies the parameters needed to access the data source, e.g., access URL, username, passwords
etc.

Table 19: Example Data Source Registration Information

Attributes Values

name Bank of Ireland

type SPARQL_ENDPOINT

accessURL http://localhost:8890/sparql

The details needed to use the data source registration API are listed in the table below. This table lists the
example input and output in the form of JSON along with their JSON schemas.

Table 20: Example Register Data Source Functionality and URL notation

Functionality: Register a Data Source

URL: /registerDatasource

Method: POST

Registers a data source whose data can be used by KYC Data Consumers for verifying the identity of their
customer.

Table 21: Example KYC Data Consumer Method using JSON Schema

Input JSON example {
 "name": "DS-1",
 "type": "SPARQL_ENDPOINT",
 "params": {
 "accessURL": "http://localhost:8890/sparql"
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 74

 "params": {
 "type": "object",
 "properties": {
 "accessURL": {
 "type": "string"
 }
 },
 "required": [
 "accessURL"
]
 }
 },
 "required": [
 "name",
 "type",
 "params"
]
}

Output JSON example {
 "message": "Data source is registered successfully."
}

JSON schema {
 "type": "object",
 "properties": {
 "message": {
 "type": "string"
 }
 },
 "required": [
 "message"
]
}

6.2.1.1.2 KYC Data Consumers
This section describes the KYC APIs provided for KYC data consumers, who can use these APIs to verify the
identity of a customer. We have identified two scenarios in the KYC use case, i.e. Identity verification and
Business Verification, described in the next sections. Templates for KYC Consumers

Table 22: Example Template for Identity Verification

Attributes Values

identifier ABC-12345

firstName Martin

middleName Serrano

surname Orozco

dateOfBirth 12-01-1975

gender Male

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 74

addressline1 House No. 111

addressline2 Lower Dangan

addressline3 Newcastle

city Galway

postalCode SE06

Table 23: Example Template for Business Verification

Attributes Values

registrationNumber HDBAKSOWI12839HGD4747

businessName XYZ Inc.

dateOfIncorporation 12-12-2012

addressline1 Building No. 13

addressline2 IDA Business Park

addressline3 Newcastle

city Galway

postalCode SE06

6.2.1.1.2.1 Get Template API (Identity Verification)

Table 24: Example Get Template Functionality and URL notation

Functionality: Get Templates

URL: /getTemplate

Method: POST

Get the template that should be provided for verification of an identity or any other purpose.

Table 25: Example Identity Verification method using JSON Schema

Input JSON example {
 "fieldsFor": "Identity Verification"
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 74

JSON schema {
 "title": "ListFields",
 "type": "object",
 "properties": {
 "fieldsFor": {
 "title": "fieldsFor"
 "type": "string",
 "description": "The purpose for which fields are requested"
 }
 }
}

Output JSON example {
 "dataFields": {
 "person": {
 "type": "object",
 "attributes": {
 "identifier": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "middleName": {
 "type": "string"
 },
 "surname": {
 "type": "string"
 },
 "maidenName": {
 "type": "string"
 },
 "dateOfBirth": {
 "type": "date"
 },
 "gender": {
 "type": "string"
 },
 "physicalAddress": {
 "type": "object",
 "attributes": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 74

JSON schema {
 "title": "DataFields",
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "person": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "identifier": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "firstName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "middleName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "surname": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "maidenName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "dateOfBirth": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 74

 "gender": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline2": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline3": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "city": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "postalCode": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 74

 }
 }
 }
 }
}

6.2.1.1.2.2 Get Templates API (Business Verification)

Table 26: Example Get List of Fields Functionality and URL notation

Functionality: Get List of Fields

URL: /listFields

Method: POST

Get the list of fields that should be provided for verification of a business or any other purpose.

Table 27: Example Business Verification method using JSON Schema

Input JSON example {
 "fieldsFor": "Business Verification"
}

JSON schema {
 "type": "object",
 "properties": {
 "fieldsFor": {
 "title": "fieldsFor"
 "type": "string",
 "description": "The purpose for which fields are requested"
 }
 }
}

Output JSON example {
 "dataFields": {
 "business": {
 "type": "object",
 "attributes": {
 "registrationNumber": {
 "type": "string"
 },
 "businessName": {
 "type": "string"
 },
 "dateOfIncorporation": {
 "type": "date"
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 74

 "physicalAddress": {
 "type": "object",
 "attributes": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "business": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "registrationNumber": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "businessName": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "dateOfIncorporation": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 45 of 74

 "physicalAddress": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline2": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "addressline3": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "city": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 },
 "postalCode": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 74

6.2.1.1.3 Identity Verification

6.2.1.1.3.1 Verify Identity API

Table 28: Example Verify Customer Identity Functionality and URL notation

Functionality: Verify Customer Identity

URL: /verifyIdentity

Method: POST

Verify the identity of a customer based on the customer information provided to the API.

Table 29: Example Verify Customer Identity method using JSON Schema

Input JSON example {
 "dataFields": {
 "person": {
 "identifier": "ABC 12345",
 "firstName": "Martin",
 "middleName": "Serrano",
 "surname": "Orozco",
 "dateOfBirth": "12-01-1975",
 "gender": "Male",
 "physicalAddress": {
 "addressline1": "House No. 111",
 "addressline2": "Lower Dangan",
 "addressline3": "Newcastle",
 "city": "Galway",
 "postalCode": "SE06"
 }
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "person": {
 "type": "object",
 "properties": {
 "identifier": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "middleName": {
 "type": "string"
 },
 "surname": {
 "type": "string"
 },
 "maidenName": {

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 47 of 74

 "type": "string"
 },
 "dateOfBirth": {
 "type": "string"
 },
 "gender": {
 "type": "string"
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
}

Output JSON example {
 "verificationId": "XYZ-22222-5555-DDD",
 "verificationDate": "2020-12-01T11:50:23",
 "verification": {
 "verificationStatus": "verified",
 "verificationResults": [
 {
 "verifiedFrom": "BOI",
 "verifiedAttributes": [
 {
 "attribute": "identifier",
 "status": "verified"
 },
 {
 "attribute": "firstName",
 "status": "verified"
 },
 {
 "attribute": "middleName",
 "status": "verified"
 },
 {
 "attribute": "surname",
 "status": "verified"
 },
 {
 "attribute": "dateOfBirth",

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 48 of 74

 "status": "verified"
 },
 {
 "attribute": "gender",
 "status": "verified"
 },
 {
 "attribute": "addressline1",
 "status": "verified"
 },
 {
 "attribute": "addressline2",
 "status": "verified"
 },
 {
 "attribute": "addressline3",
 "status": "verified"
 },
 {
 "attribute": "city",
 "status": "verified"
 },
 {
 "attribute": "postalCode",
 "status": "verified"
 }
]
 }
],
 "errors": [],
 "rule": {
 "ruleName": "",
 "ruleDescription": ""
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "verificationId": {
 "type": "string"
 },
 "verificationDate": {
 "type": "string"
 },
 "verification": {
 "type": "object",
 "properties": {
 "verificationStatus": {
 "type": "string"
 },
 "verificationResults": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "verifiedFrom": {
 "type": "string"
 },
 "verifiedAttributes": {
 "type": "array",
 "items": [

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 74

 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 50 of 74

 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 }
]
 }
 }
 }
]
 },
 "errors": {

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 51 of 74

 "type": "array",
 "items": {}
 },
 "rule": {
 "type": "object",
 "properties": {
 "ruleName": {
 "type": "string"
 },
 "ruleDescription": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

6.2.1.1.4 Business Verification

6.2.1.1.4.1 Verify Business API

Table 30: Example Verify Business API Functionality and URL notation

Functionality: Verify Business

URL: /verifyBusiness

Method: POST

Verify a business based on the business information provided to the API.

Table 31: Example Verify Business method using JSON Schema

Input JSON example {
 "dataFields": {
 "business": {
 "registrationNumber": "HDBAKSOWI12839HGD4747",
 "businessName": "XYZ Inc.",
 "dateOfIncorporation": "12-12-2012",
 "physicalAddress": {
 "addressline1": "Building No. 13",
 "addressline2": "IDA Business Park",
 "addressline3": "Newcastle",
 "city": "Galway",
 "postalCode": "SE06"
 }
 }
 }
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 52 of 74

JSON schema {
 "type": "object",
 "properties": {
 "dataFields": {
 "type": "object",
 "properties": {
 "business": {
 "type": "object",
 "properties": {
 "registrationNumber": {
 "type": "string"
 },
 "businessName": {
 "type": "string"
 },
 "dateOfIncorporation": {
 "type": "date"
 },
 "physicalAddress": {
 "type": "object",
 "properties": {
 "addressline1": {
 "type": "string"
 },
 "addressline2": {
 "type": "string"
 },
 "addressline3": {
 "type": "string"
 },
 "city": {
 "type": "string"
 },
 "postalCode": {
 "type": "string"
 }
 }
 }
 }
 }
 }
 }
 }
}

Output JSON example {
 "verificationId": "ASD-1133-333-456",
 "verificationDate": "2020-12-01T11:50:23",
 "verification": {
 "verificationStatus": "verified",
 "verificationResults": [
 {
 "verifiedFrom": "BOI",
 "verifiedAttributes": [
 {
 "attribute": "registrationNumber",
 "status": "verified"
 },
 {
 "attribute": "businessName",
 "status": "verified"
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 53 of 74

 {
 "attribute": "dateOfIncorporation",
 "status": "verified"
 },
 {
 "attribute": "addressline1",
 "status": "verified"
 },
 {
 "attribute": "addressline2",
 "status": "verified"
 },
 {
 "attribute": "addressline3",
 "status": "verified"
 },
 {
 "attribute": "city",
 "status": "verified"
 },
 {
 "attribute": "postalCode",
 "status": "verified"
 }
]
 }
],
 "errors": [],
 "rule": {
 "ruleName": "",
 "ruleDescription": ""
 }
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "verificationId": {
 "type": "string"
 },
 "verificationDate": {
 "type": "string"
 },
 "verification": {
 "type": "object",
 "properties": {
 "verificationStatus": {
 "type": "string"
 },
 "verificationResults": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "verifiedFrom": {
 "type": "string"
 },
 "verifiedAttributes": {
 "type": "array",
 "items": [
 {
 "type": "object",

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 54 of 74

 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 55 of 74

 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 },
 {
 "type": "object",
 "properties": {
 "attribute": {
 "type": "string"
 },
 "status": {
 "type": "string"
 }
 }
 }
]
 }
 }
 }
]
 },
 "errors": {
 "type": "array",
 "items": {}
 },
 "rule": {
 "type": "object",
 "properties": {
 "ruleName": {
 "type": "string"
 },
 "ruleDescription": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}

6.2.2 Streaming Data APIs – Version I
The second component provided by SeSA-ME Engine is the stream processor, which is responsible for
processing multiple available linked data streams and providing the results to the consumers of data streams.
This section describes the SeSA-ME APIs for streaming data.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 56 of 74

6.2.2.1 Stream Registration
SeSA-ME Engine can process multiple streams available and to consume the available streams of data, the
consumer first needs to register for these streams. The consumer needs to have the stream Ids and also
callback URL for receiving back the stream. The callback URL should be a RESTful API and the streaming data
should be received at this API. The technical details are provided in the next section.

6.2.2.1.1 Register for Streams API

This API is used for registering for linked streams. The example JSON inputs and outputs along with their
JSON schemas are provided below.

Table 32: Example Register for Streams API Functionality and URL notation

Functionality: Register for Streams

URL: /registerForStream

Method: POST

Registers for a stream or a list of streams.

Table 33: Example Register for Streams method using JSON Schema

JSON Example {
 "callbackURL": "http://localhost/sesame-client/getRDFStream",
 "streams": [
 {
 "streamId": "http://infinitech.eu/rdf/stream-2",
 },
 {
 "streamId": "http://infinitech.eu/rdf/stream-4",
 }
]
}

{
 "type": "object",
 "properties": {
 "callbackURL": {
 "type": "string"
 },
 "streams": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "streamId": {
 "type": "string"
 }
 },
 "required": [
 "streamId"

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 57 of 74

]
 },
 {
 "type": "object",
 "properties": {
 "streamId": {
 "type": "string"
 }
 },
 "required": [
 "streamId"
]
 }
]
 }
 },
 "required": [
 "callbackURL",
 "streams"
]
}

{
 "message": "You have successfully registered for the requested streams."
}

 {
 "type": "object",
 "properties": {
 "message": {
 "type": "string"
 }
 },
 "required": [
 "message"
]
}

6.2.3 SeSA-ME New APIS Implementation – Version II
The second version implementation component provided by SeSA-ME Engine is the stream processor, which
is responsible for processing multiple available linked data streams and providing the results to the
consumers of data streams. This section describes the SeSA-ME APIs for streaming data.

6.2.3.1 Stream Registration II
SeSA-ME Engine can process multiple streams available and to consume the available streams of data, the
consumer first needs to register for these streams. The consumer needs to have the stream Ids and also
callback URL for receiving back the stream. The callback URL should be a RESTful API and the streaming data
should be received at this API. The technical details are provided in the next section.

6.2.3.1.1 Unregister Data Source API

The details needed to use the un-register data source API are listed in the table below. This table lists the
example input and output in the form of JSON along with their JSON schemas.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 58 of 74

Table 34: Example for Unregister Data Source API Functionality and URL notation

Functionality: Un-register a Data Source

URL: /unregisterDatasource

Method: POST

The method to unregister a data source already registered with SeSA-ME and what data can be used.

Table 35: Example unregister a Data Source method using JSON Schema

Input JSON example {
 "datasource": "http://localhost:8890/sparql"
}

JSON schema {
 "type": "object",
 "properties": {
 "datasource": {
 "type": "string"
 }
 },
 "required": [
 "datasource"
]
}

Output JSON example {
 "message": "Data source is un-registered successfully."
}

JSON schema {
 "type": "object",
 "properties": {
 "message": {
 "type": "string"
 }
 },
 "required": [
 "message"
]
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 59 of 74

6.2.3.1.2 Run Query API

The details needed to use the run query API are listed in the table below. This table lists the example input
and output in the form of JSON along with their JSON schemas.

Table 36: Example for Unregister Data Source API Functionality and URL notation

Functionality: Run Query on a Data Source

URL: /runQuery

Method: POST

Runs a SPARQL query on the specified data source and returns back the obtained results.

Table 37: Example Runs a SPARQL query on the specified data source

Input JSON example {
 "datasource": "http://localhost:8890/sparql",
 "query": "SELECT * WHERE { ?s ?p ?o . } LIMIT 1"
}

JSON schema {
 "type": "object",
 "properties": {
 "datasource": {
 "type": "string"
 },
 "query": {
 "type": "string"
 }
 },
 "required": [
 "datasource",
 "query"
]
}

Output JSON example {
 "head": {
 "vars": [
 "s",
 "p",
 "o"
]
 },
 "results": {
 "bindings": [
 {
 "s": {

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 60 of 74

 "type": "uri",
 "value": "http://infinitechproject.eu/data/joabos"
 },
 "p": {
 "type": "uri",
 "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
 },
 "o": {
 "type": "uri",
 "value": "https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/Person"
 }
 }
]
 }
}

JSON schema {
 "type": "object",
 "properties": {
 "head": {
 "type": "object",
 "properties": {
 "vars": {
 "type": "array",
 "items": [
 {
 "type": "string"
 },
 {
 "type": "string"
 },
 {
 "type": "string"
 }
]
 }
 },
 "required": [
 "vars"
]
 },
 "results": {
 "type": "object",
 "properties": {
 "bindings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "s": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 61 of 74

 },
 "p": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 },
 "o": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 }
 }
 }
]
 }
 },
 "required": [
 "bindings"
]
 }
 },
 "required": [
 "head",
 "results"
]
}

6.2.3.1.3 Run Query Plan API

The details needed to use the run query plan API are listed in the table below. This table lists the example
input and output in the form of JSON along with their JSON schemas.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 62 of 74

Table 38: Example for Run Query API Functionality and URL notation

Functionality: Run a query plan

URL: /runQueryPlan

Method: POST

Table 39: Example Run a query plan on both static and streaming data sources

Input JSON
example

{
 "staticRequest": [
 {
 "datasource": "http://localhost:8890/sparql",
 "query": "SELECT * FROM <http://infinitechproject.eu/graph> WHERE { ?s ?p ?o . } LIMIT 1"
 }
],
 "streamRequest": [
 {
 "callbackURL": "http://10.196.2.55:8082/sesame-client/getRDFStream",
 "streams": [
 {
 "streamId": "http://infinitech.eu/rdf/stream-1"
 }
]
 }
]
}

JSON
schema

{
 "type": "object",
 "properties": {
 "staticRequest": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "datasource": {
 "type": "string"
 },
 "query": {
 "type": "string"
 }
 },
 "required": [
 "datasource",
 "query"
]
 }
]
 },
 "streamRequest": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "callbackURL": {

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 63 of 74

 "type": "string"
 },
 "streams": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "streamId": {
 "type": "string"
 }
 },
 "required": [
 "streamId"
]
 }
]
 }
 },
 "required": [
 "callbackURL",
 "streams"
]
 }
]
 }
 },
 "required": [
 "staticRequest",
 "streamRequest"
]
}

Output
for static
request

JSON
example

{
 "head": {
 "vars": [
 "s",
 "p",
 "o"
]
 },
 "results": {
 "bindings": [
 {
 "s": {
 "type": "uri",
 "value": "http://infinitechproject.eu/data/joabos"
 },
 "p": {
 "type": "uri",
 "value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
 },
 "o": {
 "type": "uri",
 "value":
"https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/Person"
 }
 }
]
 }
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 64 of 74

JSON
schema

{
 "type": "object",
 "properties": {
 "head": {
 "type": "object",
 "properties": {
 "vars": {
 "type": "array",
 "items": [
 {
 "type": "string"
 },
 {
 "type": "string"
 },
 {
 "type": "string"
 }
]
 }
 },
 "required": [
 "vars"
]
 },
 "results": {
 "type": "object",
 "properties": {
 "bindings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "s": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 },
 "p": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 65 of 74

 "o": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 }
 }
 }
]
 }
 },
 "required": [
 "bindings"
]
 }
 },
 "required": [
 "head",
 "results"
]
}

Output for
stream request

JSON
example

{
 "head": {
 "vars": [
 "s",
 "p",
 "o"
]
 },
 "results": {
 "bindings": [
 {
 "s": {
 "type": "uri",
 "value": "http://infinitech.eu/rdf/customer-41"
 },
 "p": {
 "type": "uri",
 "value":
"https://spec.edmcouncil.org/fibo/ontology/FND/AgentsAndPeople/People/hasLastName"
 },
 "o": {
 "datatype": "http://www.w3.org/2001/XMLSchema#string",
 "type": "typed-literal",
 "value": "Last Name 41"
 }
 }
]
 }
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 66 of 74

JSON
schema

{
 "type": "object",
 "properties": {
 "head": {
 "type": "object",
 "properties": {
 "vars": {
 "type": "array",
 "items": [
 {
 "type": "string"
 },
 {
 "type": "string"
 },
 {
 "type": "string"
 }
]
 }
 },
 "required": [
 "vars"
]
 },
 "results": {
 "type": "object",
 "properties": {
 "bindings": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "s": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 },
 "p": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "type",
 "value"
]
 },

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 67 of 74

 "o": {
 "type": "object",
 "properties": {
 "datatype": {
 "type": "string"
 },
 "type": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 },
 "required": [
 "datatype",
 "type",
 "value"
]
 }
 }
 }
]
 }
 },
 "required": [
 "bindings"
]
 }
 },
 "required": [
 "head",
 "results"
]
}

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 68 of 74

7 SeSA-ME Continuous Integration/Continuous
Development

The following CI/CD documentation is considering you have an instance of the SeSA-ME components
running in your machine and all the file and ports are accessible/configured as local host, to run
SeSA-ME Engine use the below commands:

7.1 SeSA-ME Engine Development

7.1.1 Run SeSA-ME Engine

To run SeSA-ME Engine use the below command:

mvnw spring-boot:run

Then Navigate to the below URL to check SeSA-ME Engine.

http://localhost:8080/sesame-engine/swagger-ui.html

7.1.2 Build SeSA-ME Engine

To build SeSA-ME Engine run the below command:

mvnw package

7.2 Deployment using Docker

Step 1: Use the following command to build a local docker image of SeSA-ME Engine.

docker build -t sesame-engine-image-local .

Step 2: Use the following command to deploy the docker image of SeSA-ME Engine built in the
previous step.

docker run --name sesame-container -d -p 8080:8080 sesame-engine-image-local

Step 3: Navigate to the below URL to check SeSA-ME Engine.

http://localhost:8080/sesame-engine/swagger-ui.html

7.3 SeSA-ME Engine APIs

The description of SeSA-ME Engine APIs can be found in the section 4 in this deliverable

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 69 of 74

7.4 SeSA-ME Engine Deployment

7.4.1 SeSA-ME Engine Project Structure

Table 40: The SeSA-ME component has the following structure:

7.4.2 Dependencies List

Table 41: SeSA-ME Dependecies

Example RDF Data

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>eu.infinitech.nuig</groupId>
 <artifactId>sesame-engine</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>sesame-engine</name>
 <description>Sesame Engine</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.4.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 70 of 74

 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.6.1</version>
 </dependency>

 <dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.6.1</version>
 </dependency>

 <!-- uncomment below dependency if want to build a war -->
 <!-- <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency> -->

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>eu.larkc.csparql</groupId>
 <artifactId>csparql-core</artifactId>
 <version>0.9.6</version>
 </dependency>

 <dependency>
 <groupId>com.squareup.okhttp</groupId>
 <artifactId>okhttp</artifactId>
 <version>2.7.5</version>
 </dependency>

 <dependency>
 <groupId>com.apicatalog</groupId>
 <artifactId>titanium-json-ld</artifactId>
 <version>1.0.0</version>
 </dependency>

 <dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>jakarta.json</artifactId>
 <version>2.0.0</version>

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 71 of 74

 </dependency>

 </dependencies>

 <repositories>
 <repository>
 <id>maven Repo1</id>
 <name>maven Repo1</name>
 <url>http://repo1.maven.org/maven2</url>
 </repository>
 <repository>
 <id>Sonatype repository</id>
 <name>Sonatype's Maven repository</name>
 <url>http://oss.sonatype.org/content/groups/public</url>
 </repository>
 <repository>
 <id>streamreasoning_repository</id>
 <name>streamreasoning repository</name>
 <url>http://streamreasoning.org/maven/</url>
 <layout>default</layout>
 </repository>

 </repositories>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.3</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

7.4.3 Docker File

Table 42: Docker File

Example RDF Data

FROM openjdk:8-jdk-alpine
RUN addgroup -S spring && adduser -S spring -G spring
USER spring:spring
ARG JAR_FILE=target/sesame-engine-0.0.1-SNAPSHOT.jar
ADD ${JAR_FILE} app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 72 of 74

8 Conclusions

The Semantic Stream Analytics Engine (SeSA-ME) has been designed and implemented in the
context of the INFINITECH project, it is an extension of the Super Stream Collider (SSC) framework,
which provides a set of web-based interfaces and tools for building data mashups combining
semantically annotated Linked Stream and Linked Data sources into easy-to-use data mashups for
applications. The SeSA-ME engine make uses of online tools to includes static data and dynamic data
(streams) along with a visual SPARQL query editor using Swagger APIs and visualization tools for
novice users while supporting full access and control over the data mashups for expert users. The
SeSA-ME engine has been provided as a Docker file to facilitate the use and integration of the tool.

The INFINITECH graph data model is made accessible online using machine readable files and also
for human understanding and manipulation. The development and deployment of the INFINITECH
Graph Data Model enables the support for both the design and deployment of stream-based web
applications in a very simple and intuitive way and the analytics services using stream-based
applications and services is tied with the development of the SeSA-ME platform.

The main ontologies used as baselines are FIBO, FIGI and LKIF, because they focused on both
financial sector and financial operations containing the baseline for the metadata that represent,
cross-domain and intra domain, financial transactions, and operations with an attached effort
towards standardisation. Additional ontologies used as extensions towards particular pilots can be
developed and further integrated withing the data pack following the documentation provided in
this deliverable. The INFINTECH Core ontology is an extension generated in the project that
describes cross-domain vocabularies that are used in multi-domains within the INFINITECH project
domain areas, it is meant to be complemented by other domain specific vocabularies.

The INFINITECH project have facilitated the design and implemented of the Semantic Stream
Analytics Middleware-Engine (SeSA-ME) and provided a thorough analysis about the already
existing ontologies that are related to the finance and insurance sectors that can be reused for our
purposes in the INFINITECH project. The INFINITECH graph data model facilitates a semantic
interoperability aspects that are necessary to process, exchange and share data across different
components, systems and platforms. The SeSA-ME engine enables a semantic layer approach that
constitutes also the first step of the INFINITECH pipeline, i.e., gathering semantically annotated data
from provided and/or available datasets or data streams.

In this deliverable, we have described how INFINITECH project would benefit from semantic
technologies like Linked Data and ontologies as the best practices in the semantic interoperability
building process. The implementation provided and documented in the three deliverables i.e. D4.4,
D4.5 and D4.6 is a reference implementation that was improved following general requirements
coming from the study and purposes at INFINITECH pilots and following stakeholder’s requirements
from particular domains demonstrating that the use of semantic technologies is possible and that
the benefits of semantic technologies and the use of a semantic engine benefits the construction
and operation of data mashups and that a semantic engine can cope with resolving some of the
semantic interoperability requirements.

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 73 of 74

9 References

[Boots 2017] Botts, M., Percivall, G., Reed, C. and Davidson. J. OGC Sensor Web Enablement:

Overview and High Level Architecture. Technical report, OGC, December 2007.

[Compton et al 2012] Compton, M., Barnaghi, P., Bermudez, L., Castro, R. G., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K. Kelsey, W. D.,
Phuoc, D. L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheath, A.
and Taylor, K. The SSN Ontology of the Semantic Sensor Networks Incubator Group. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web, ISSN 1570-8268,
Elsevier, 2012.

[DOI] Document Object Identifier
 Accessible here: http://www.doi.org/handbook_2000/DOIHandbook-v4-4.1.pdf

[EPCGlobal-RPS 2006] EPCglobal: Reader Protocol Standard, Version 1.1, 3 Ratified Standard, 4
June 21, 2006

[EPCGlobal-ALE 2009] EPCglobal: The Application Level Events (ALE) Specification, Version 1.1.1
Part I: Core Specification, EPCglobal Ratified Standard, 13 March 2009

[EPCGlobal-A 2007] EPCglobal: The EPCglobal Architecture Framework, EPCglobal Final Version 1.2
Approved 10 September 2007

[EPCGlobal-EPC 2007] EPCglobal: EPC Information Services (EPCIS) Version 1.0.1 Specification
Approved September 21, 2007

[EPCGlobal-RMS 2007] EPCglobal: Reader Management Standard 1.0.1, 3 May 31, 2007

[GENE-Ontology] GENE Ontology - bioinformatics initiative
 Accessible here: http://www.geneontology.org

[Heitman 2009] Heitmann, B., Kinsella, S., Hayes, C. and Decker, S. Implementing Semantic Web
Applications: Reference Architecture and Challenges. In International Workshop on Semantic
Web enabled Software Engineering, collocated with the 8th International Semantic Web
Conference (ISWC2009), 2009.

[Henson 2009] Henson, C. A., Pschorr, J. K., Sheth, A. P. and Thirunarayan, K. SemSOS: Semantic
sensor observation service. Collaborative Technologies and Systems, International Symposium
on, 0:44–53, 2009.

[Jacobs 2004] Jacobs, I. and Walsh, N. Architecture of the World Wide Web, Volume One, World
Wide Web Consortium, Recommendation REC-webarch-20041215, 2004.

[Le-Phuoc et al. 2011a] Le-Phuoc, D., Dao-Tran, M. Parreira, J. X. and Hauswirth, M. A Native and
Adaptive Approach for Unified Processing of Linked Streams and Linked Data. Proceedings of
the 10th International Conference on The Semantic Web (ISWC’11), Springer, 2011

[Le-Phuoc et al. 2011b] Le-Phuoc, D., Nguyen Mau, H., Parreira, J. X. and Hauswirth, M.. The Linked
Sensor Middleware – Connecting the Real World and the Semantic Web. Proceedings of the
10th International Conference on The Semantic Web (ISWC’11), Springer, 2011

D4.5 – Semantics Stream Analytics Engine II

H2020 – Project No. 856632 © INFINITECH Consortium Page 74 of 74

[Le-Phuoc et al. 2009] Le-Phuoc, D. and Hauswirth, M. Linked open data in sensor data mashups.
Proceedings of the 2nd International Workshop on Semantic Sensor Networks (SSN09) in
conjunction with ISWC 2009

[LOD-Project] World Wide Web Consortium - Linked Open Data, Accessible here:
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

[Priest 2007] Priest, A. Na, M., Niedzwiadek, H. and Davidson, J. Sensor observation service.
Technical Report OGC 06-009r6, October 2007.

[Ruta 2007] Ruta, M. , Noia, T. Di, Scioscia, F., Di Sciascio E. Semantic-enhanced EPCglobal Radio-
Frequency IDentification. SWAP 2007

[Salehi 2007] Salehi, A., Aberer, K. «GSN, Quick and Simple Sensor Network Deployment»,
European conference on Wireless Sensor Networks (EWSN), Netherlands, 2007

[Scherp 2009] Scherp, A., Franz, T. Saatho, S. Staab. F–a Model of Events Based on the
Foundational Ontology DOLCE+DnS Ultralight. In: International Conference on Knowledge
Capturing (K-CAP), Redondo Beach, CA, USA., 2009.

[Sheth 2008] Sheth, A. Henson, C., Sahoo. S. Semantic Sensor Web. IEEE Internet Computing 12
(4), 2008.

[Tsiatsis 2010] Tsiatsis, V., Gluhak, A., Bauge, T., Montagut, F., Bernat, J., Bauer, M., Villalonga, C.,
 Barnaghi, P.M., Krco, S. The SENSEI Real World Internet Architecture. Future
 Internet Assembly, IOS Press, 2010.

[UMLS] Unified Medical Language System
 Accessible here: http://www.nlm.nih.gov/ research/umls/index.html

[IETF-RFC2141] IETF - Uniform Resource Names
 Accessible here: http://tools.ietf.org/html/rfc2141

[W3C-RDF] World Wide Web Consortium - Resource Description Framework,
 Accessible here: http://www.w3.org/TR/rdf-syntax-grammar/

[W3C-RDFSchema] World Wide Web Consortium - Resource Description Framework Schema
 Accessible here: http:// www.w3.org/ TR/ rdf-schema

[W3C-Turtle] World Wide Web Consortium - Turtle Serialisation Specification
 Accessible here: http://www.w3.org/TeamSubmission/turtle/

[W3C-N-Triples] World Wide Web Consortium - N-Triples format specification
 Accessible here: http://www.w3.org/TR/rdf-testcases/#ntriples

W3C-OWL] World Wide Web Consortium – Ontology Web language
 Accessible here: http:// www.w3.org/ TR/ owl-ref

[W3C RDFa] World Wide Web Consortium - Resource Description Framework in Attributes
 Accessible here: http://www.w3.org/TR/xhtml-rdfa-primer/

[W3C-SPARQL] SPARQL Query Language for RDF Implementation
 Accessible here: http://www.w3.org/TR/rdf-sparql-query/

