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Executive Summary 
The goal of task T3.2 “Polyglot Persistence over BigData, IoT and Open Data Sources” is to provide a 
common and integrated way to access data that is stored in a structured, semi-structured or even 
unstructured fashion over a variety of heterogeneous data stores, in a unified manner. The rationale 
behind this task is that in modern enterprises, especially in organizations coming from the finance and 
insurance sectors, it is a necessity to access and process data coming from multiple sources. As there is no 
one size fits all data management system, different databases have been proposed to server different types 
of needs and workloads. Due to this, a finance organization may use on one hand traditional relational 
datastores that ensure transactional semantics and provide data consistency, which stores data in a 
structured schema: the relational model. On the other hand, there is always the need for using NoSQL 
databases that can scale more adequately, sacrificing the support for transactional semantics, and often 
using less strict data models, so that the data can be considered as semi-structured. Document-based 
datastores are a prominent example, where the schema of the data can be easily modified and extended in 
order to be adapted in rapidly changed software. Key-value stores are also often used in order to store 
information coming from IoT devices, a pattern that is a norm in the insurance companies where sensor 
data from smart devices or agricultural sensors are being continuously ingested, or logging information 
tracking the web traffic or the finance transactions of a customer, which is of great interest for the finance 
sector. Key-value stores are candidate where there is a huge write-intensive workload with rare data 
modifications, where the data management system needs to scale out easily. Even if they do not provide 
any guarantees over the schema of the value, they are considered as semi-structured, as the data tends to 
preserve the schema. Finally, such organizations need to process data coming from external sources, like 
feeds from social media networks, or newspaper articles, in order to extract trends and opportunities. This 
type of data can be considered as unstructured and are often being imported into a data lake and by using 
specific tools for data analysis, this type of information can be extracted. 

Accessing and processing data coming from such a variety of heterogeneous data sources is a very 
complicated task in various levels. Firstly, each of the data stores provides distinct and specific methods for 
data connectivity, while on the same time, makes use of different query languages. Even different 
relational databases might provide different connectivity (i.e. JDBC vs ODBC) and even if they all rely on the 
SQL query language, its dialect might differ significantly. The data scientist must be aware and familiar with 
a variety of different tools and languages. Moreover, not all of the data base management systems return 
data in the same model. Relational databases return data as table with relationships, which can be easily 
transformed into an entity-relational model. However, key-value and NoSQL stores do not comply with 
specific schemas and the application developer or the data scientist must maintain different models and 
create a common layer on top. Most importantly, when there is the need to combine data coming from 
different sources, where joining data sources is mandatory, this must be done in the application or data 
processing level. However, joining data sources is a very challenging task and there is a lot of literature on 
how to do it effectively, which has been implemented by the database management systems. In fact, this 
operation should be transparent to the data scientist and the application developer and should be 
implemented in the data management level, that can do it more effectively. Due to this, various data 
analytical frameworks have been used during the recent years that provide a common way to address 
these challenges. However, they still require to fetch the majority of data into the data processing layer, 
which can become very resource consuming. 

Task T3.2 “Polyglot Persistence over BigData, IoT and Open Data Sources” has as its main objective to 
provide a solution for efficient and unified integrated access over a variety of heterogeneous data stores 
that provide data in all structured, unstructured or semi-structured fashions. As an integral part of the 
INFINITECH data management layer, its goal is to provide a common API that can be used in order to access 
data seamlessly, hiding the internal complexities from the data scientists and application developers, 
therefore provide polyglot capabilities to the platform. In order to achieve this, a state-of-the-art analysis of 
the existing frameworks that can be considered as polystores has been included first, aiming to identify the 
best practices that have been proposed in the literature and are widely used by modern enterprises today, 
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and to highlight their weaknesses and current challenges that are open to research to further improve their 
solutions. 

Moreover, as it was mentioned before, different datastores often provide their own query language for 
accessing and retrieving data. One of the requirements for the polyglot data management system that we 
are presenting in this deliverable, is to provide a seamless way to access data coming from a variety of 
heterogeneous sources. Due to this, we have defined the INFINITECH Common Query Language that will be 
used by the data scientists in order to request data for analysis in a unified manner. The INFINITECH 
Common Query Language has a lot of similarities with the standard SQL, allowing the data scientists to 
write queries in well-known standards. It also allows writing expressions in the native language of a data 
store, in cases the user wants to exploit some unique characteristics of the database that cannot be 
expressed with standard SQL. 

At the first phase of the project, we concluded on the principle architectural design pattern that will drive 
the whole design of the solution, and the main building blocks and components of the solution have been 
also designed. We followed the mediator-wrapper approach, where one orchestrator drives the whole 
execution of the query, and different wrappers implement the data connectivity and query execution on 
the target data stores, hiding the internal complexity and becoming transparent from the orchestrator. The 
orchestrator is now part of the central data repository and data management layer of INFINITECH, also 
known as the INFINISTORE, and it extends in order to provide the polyglot capabilities. It has been 
incorporated in the query engine of INFINISTORE, in order to take advantage of the already available 
functionalities that are crucial for the effective data retrieval: the query planner, the query optimizer and 
the query executor. All of them have been further extended in order to take into account the polyglot 
capabilities that the engine now offers. 

A complementary solution that has been implemented during the second phase of the project, is what we 
call the Real-Time Data Warehousing. Its objective is to solve the inherit technological barriers that modern 
system integrators have to deal with when having vast amounts of data that become obsolete after a 
period of time and thus can be considered as historical. Having to deal with both operational and historical 
data introduces several restrictions and different architectural solutions can be used, each one of those 
having its own drawbacks however. Our approach provides a holistic query processing framework for 
accessing both operational and historical data that can be split from the operational datastore to a data 
warehouse. Our implementation is built upon the polyglot query engine that had been provided at the first 
phase of the project. 

Finally, it is important to highlight that this is the second version of this deliverable and reports the work 
that have been done in the scope of task T3.2 until M19. At this phase of the project, apart from the 
necessary initial state-of-the-art analysis of other polystore systems, the biggest part of the effort was 
spent in the definition of the INFINITECH Common Query Language, which is the basis for this task. A great 
effort had also been spent in order to design the basic architecture of the solution and the fundamentals 
that have driven the implementation and the more advanced functionalities that have been planned for the 
next periods. At this phase, we also provide a concrete implementation of the solution, allowing for a query 
execution over federated databases: the central data repository of INFINITECH, a relational JDBC-
compatible database, a MongoDB instance or a data lake. In the third and final version of this document, an 
extensive evaluation of our solution will be provided.  
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1 Introduction 
This deliverable summarizes the work that has been done in the scope of task T3.2 “Polyglot Persistence 
over BigData, IoT and Open Data Sources” at the second phase of the project (M19). The goal of this task is 
to provide common and integrated access over structured, unstructured or semi-structured data that can 
be stored in a variety of different and heterogeneous data management systems. These systems include 
traditional relational databases, NoSQL stores, Hadoop data lakes, etc. Task T3.2 will provide a unique 
interface which will be based on the JDBC specification in order to make use of a native API and a common 
query language that is very close to SQL, in order to make use of a native scripting language for query 
processing, as well. By providing both a common API and scripting language for transparent data retrieval 
from heterogeneous data stores, INFINITECH has extended its data management system with polyglot 
capabilities, thus providing an integrated data layer that can be used transparently by the Open APIs and 
the semantic framework. Moreover, built upon the polyglot query engine, we have also implemented the 
Real-Time Data Warehousing that solves main technological barriers when dealing with both operational 
and historical datasets. 

1.1 Objective of the Deliverable 
The objective of this deliverable is to report the work that has been done in the context of task T3.2 at this 
phase of the project (M19). This task lasts until M27, and therefore, an additional version will be released, 
extending and modifying, when necessary, the content of this document, following the agile approach for 
system development, in order to update the solution and implementation with the current trends of the 
environment as the project progresses. The work done during this phase (M03-M19) was mainly focused on 
the definition of the INFINITECH Common Query Language, which is the basis of the whole solution. 
Moreover, the basic architectural design of the solution and details about the implementation have been 
provided in order to validate our approach. In the second version of this document, we have extended this 
document with the details of the implementation of the real-time data warehousing. In the third and final 
version, it is planned to provide an extensive evaluation of our approach.  

1.2 Insights from other Tasks and Deliverables 
The work that is reported in this deliverable is based on the overview description of the corresponding task 
T3.2, which has been further specified at WP2 level, which is the fundamental work package that defines 
the overall requirements of the whole platform. More precisely, task T2.1 with the corresponding D2.1 
deliverable refers to the user stories of the pilots that will be accommodated by the platform, and reports 
their user requirements. To this direction, task T2.3 with the corresponding D2.5 deliverable defines the 
specification of the technologies that INFINITECH provides, and translates the user stories and 
requirements to specific technical requirements that must be addressed by the technologies. Moreover, 
task T2.5 and deliverable D2.9 provide a list of data asset specifications, where the available target data 
store that need to be taken into account, has been defined. Last but not least, the work that is reported in 
this document is also related with the Reference Architecture of the INFINITECH, as the solution provided 
by the Integrated Polyglot Persistence is an integral part of the platform. It is worth mentioning that even if 
there is no direct connection with task T3.2 and WP7, there have been discussions with all pilots in order to 
further clarify their needs and their proposed solutions, as the pilots are getting in more technical details in 
the work that is being currently done in WP7. Finally, T3.2 is at the lower layer of the Reference 
Architecture which follows the guidelines of the BDVA, and therefore, its output will be taken into account 
by the system components that are located in the upper layers, and more precisely the semantic 
interoperable engine in WP4, and the analytical tools that will be developed in the scope of WP5. 
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1.3 Updates from the previous version (D3.4) 
In this version of the report we have added section 6 which is built upon the polyglot query engine that was 
delivered in the first phase of this task. Section 6 provides the details of the real time data warehousing, 
whose objective is to provide a holistic architectural design that can allow for federated query processing 
over the operational and the historical part of a common dataset, allowing the data movement from the 
one to the other in real time, with no downtimes and ensuring the consistency of the data in terms of 
database transactions when data is being moved. We provide the motivation behind our solution and then 
the basic principles, requirements and architectural decisions of our architecture. Finally, we give analytical 
details on how we implement the federated query processing and how we ensure the consistency of the 
data, which means on-going database transactions return equivalent results when data is being moved 
concurrently from the operational datastore to the data warehouse. 

1.4 Structure 
This document is structured as follows: Section 1 introduces the document, putting the work reported in 
this deliverable under the context of the project, highlighting its relationship with other tasks of the DoA. 
Section 2 provides a state-of-the-art analysis of existing solutions and frameworks in the wider 
technological and scientific area of polystores. Section 3 introduces the INFINITECH Common Query 
Language that will be the basis for accessing data across different data stores, while section 4 presents the 
overall design of the solution. Section 5 provides details on the initial implementation that has been 
provided as a validation of the architecture of this component, targeting one external datastore that is 
compatible with JDBC. The additional section 6 of this second version of the deliverable provides the details 
of the real time warehousing, while finally, section 7 concludes the document. 
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2 State-of-the-Art Analysis on Polystores 
Accessing data from diverse and heterogeneous data sources has been long studied and various solutions 
have been proposed, usually called multidatabase or data integration systems [1][2]. The most typical 
approach that can be found in a variety of those proposals involves the definition of a common data model 
and query language that can be used in order to transparently access data sources via the mediator-
wrapper paradigm, which aims to hide the details of the diverse data connectivity and distribution. In the 
latest years, with the emergence of cloud databases and big data processing frameworks, the 
multidatabase solutions became into what we call nowadays polystores systems. The latter, enable 
integrated access to traditional relational database management systems, NoSQL solutions and Hadoop 
data lakes via a common query engine.  

A first category of polystores can be considered as loosely-coupled, and resembles much of the traditional 
multidatabase systems that can deal with autonomous datastores, being accessed via a common interface, 
following the mediator-wrapper paradigm, where the access is being granted via the common interface 
exposed by the mediator, while the wrapper implements the details on how to connect, access and retrieve 
data from the source. Most of the loosely-coupled systems can only support read-only operations. In this 
category, BigIntegrator[1] integrates data from cloud-based NoSQL big data stores, such as Google’s 
Bigtable, and relational databases using its own query language, which does not support however Hadoop 
data lakes, while QoX [3] integrates data from RDBMS and HDFS data stores. SQL++ [4] mediates SQL and 
NoSQL data sources through a semi-structured common data model. Its query engine is capable of 
translating the subqueries of a statement to native queries that will be executed in the target datastores. 
BigDAWG [5][6] on the other hand, instead of translating the different datastores into a common data 
model, it defines the islands of information, where its island corresponds to a specific data model and its 
language and provides transparent access to the target database. On top, it enables cross-island query 
execution by exchanging and moving intermediate results between the different islands.  

Another category of polystores have an opposite approach, and they are considered tightly-coupled 
polystores. Their goal is to integrate Hadoop or Spark for big data analysis with traditional relational 
database management systems. They tend to trade autonomy for performance, and they provide massive 
parallelism, using shared-nothing nodes in a cluster, and can benefit from the use of high-performance 
computing. One example is Odyssey [7] which enables storing and querying data within HDFS and RDBMS, 
using opportunistic materialized views. MISO [8] aims to tune the physical design of a multistore system in 
order to improve the overall performance when used in big data processing. JEN [9] aims at joining data 
coming from two different datastores such as Hadoop and traditional relational database management 
systems, parallelising join algorithms and minimizing data movement when executing these algorithms. 
Polybase [10] enables HDFS access using SQL scripting language. Moreover HadoopDB  [11] provides 
MapReduce access to several RDMS systems that are supported, it establishes data connectivity and then 
execute SQL queries that return key-value pairs to be further processed by the MapReduce. Teradata 
IntelliSphere [12] provides an integrated data access over heterogeneous data sources, that are SQL 
compatible though.  

Apart from these two categories of polystore systems, in the latest years, hybrid solutions that have 
recently been evolved and are widely used by the industry, are proposed in the literature. They support 
data source autonomy as loosely-coupled systems do, while on the other hand, they preserve parallelism 
by exploiting the local datastores, as in tightly-coupled systems. They can be seen as parallel query engines 
that provide several different connectors to external sources that can be executed in a parallel fashion as 
well.  One representative of this hybrid category is Spark SQL  [13] which is a parallel SQL engine that 
provides tight integration between relational and procedural processing via a declarative API and takes 
advantage of massive parallelism when executing the query statements. It defines the notion of 
DataFrames that map arbitrary object collections that are being retrieved from the local datastores into 
relations, and thus, it enables relational operations. Presto [14] is a distributed SQL query engine running 
on a cluster of machines and can process analytical queries against big data sources via massively parallel 
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processing. This is achieved by using a coordinator process, and multiple workers that make use of 
connectors that provide the interface with the external data sources and provide all kind of metadata 
information to the coordinator to optimize the query execution. Apache Drill [15] is also a distributed query 
engine for large-scale datasets that makes use of massive parallel processing. Drillbit services run at each 
node and receive the query, compile it to an optimized execution plan and exploit data locality in order to 
further extend the level of parallelism. Myria [16] is yet another recent polystore, built on a shared-nothing 
parallel architecture, which efficiently federates data across diverse data models and query languages. 
Finally, Impala [17] is an open-source SQL engine with massive parallelism capabilities, operating over 
Hadoop data processing environment. As opposed to typical batch processing frameworks for Hadoop, 
Impala provides low latency and high concurrency for analytical queries. 

The main difference with INFINITECH Integrated Polystore engine is that not only does it enable parallel 
integration with external data sources, but it also combines massive parallelism with native queries that 
enables the exploitation of the unique characteristics of the target data management system. Moreover, all 
aforementioned solutions either retrieve the majority of the data in an intermediate layer or process there 
the query in a parallelized fashion, or push down the query execution to the node, which implies a lot of 
data movement when joining data sources from different stores.  

One innovative aspect of the INFINITECH Integrated Polystore engine is its ability to efficiently execute joint 
operations using bind joins. A query statement can be analysed in subqueries, each one of those is targeting 
an external datastore. These are handled by table functions, which can be considered as query operators 
that can be considered by the query planner and query optimizer of the central data management layer of 
INFINITECH. Once the integration of the Polystore engine of the platform with the data management is 
achieved, then bind joins can be proposed automatically when selecting the optimal query execution plan 
and data execution over integrated heterogeneous datastores, that can be more effective. Combining this 
aspect with the ability to express a subquery by native language or scripts, allows to fully exploit the power 
and unique characteristics of the target data management system, as opposed to static mappings to a 
common data model used to execute query statement across datastores. 
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3 INFINITECH Common Query Language 
As mentioned in the previous section, the Integrated Polyglot Persistent component of the platform fits 
into the hybrid category of polystores, being both loosely-coupled, thus providing autonomy on the 
external datastores, and on the same time tightly-coupled, providing a mechanism for massive parallelism, 
having a common data model. The main difference with the aforementioned solutions is that the data 
model is not static but instead, it can be created dynamically fitting to the needs of the submitted query 
and the target datastores. To do this, we need a novel query language that can allow this. Towards this 
direction, we introduce the INFINITECH Common Query Language that will be based on the CloudMdsQL 
[18]. This Common Query Language is an SQL-based scripting language with extended capabilities that 
allows embedding subqueries to be expressed in terms of each data store’s native query interface. The 
common data model respectively is table-based, with support of rich datatypes that can capture a wide 
range of the underlying data stores’ datatypes, such as arrays and JSON objects, in order to handle non-flat 
and nested data, with basic operators over such composite datatypes. 

3.1 Query Language 
In this subsection, the design and the basic principles of the INFINITECH Common Query Language will be 
presented. The latter requires a deep expertise and knowledge by the data scientist and application 
developers regarding the specifics of the underlying datastores in order to exploit their unique 
characteristics, as well as awareness about how data are organized across them. It is important to highlight 
that the Integrated Polyglot component takes into account only read-only operations, allowing the data 
ingestion and modification to happen at the data store level. As a result, the integrated queries will make 
use of projection over several selections that consist of native subqueries. On the component level, the 
results of the selections are joined and the projection is being applied. In the level of the scripting language, 
that will involve a SELECT statement over native subqueries. The latter are defined as table functions, also 
called named table expressions. This means that a function/expression is being submitted and returns a 
virtual table, which has a name and a signature, consisted by the names and types of the columns of that 
virtual table. The function/expression can be either a regular SQL SELECT statement or a native statement 
expressed in the query interface of the target datastore. It is important to notice that the Integrated 
Polyglot component includes a query compiler, which can analyse the SQL statement and re-write it in 
order for the engine to execute it more efficiently. To highlight the difference between SQL and native 
query, let’s assume that we have an integrated query targeting a traditional relational SQL compatible 
database and MongoDB3, which is a document-based datastore with its own query interface. The 
integrated query expressed in the INFINITECH Common Query Language will need to join two subqueries, 
one expressed in standard SQL and the other in a native way. The query will be the following: 

T1(x int, y int)@rdb = (SELECT x, y FROM A) 

T2(x int, z array)@mongo = {* 

  return db.A.find( {x: {$lt: 10}}, {x:1, z:1} ); 

*} 

SELECT T1.x, T2.z FROM T1, T2 

WHERE T1.x = T2.x AND T1.y <= 3 

 

In this example, we define two named table expressions, T1 and T2 which target datastore rdb (an SQL 
compatible database) and datastore mongo (a MongoDB database). T1 is defined by standard SQL while T2 
holds a native expression (it is included in the bracket symbols {* *}). The result will be the projection of 
T1.x and T2.z from the joint operation of the results of those two subqueries that will be sent 
independently to the two target datastores. At this point, we need to focus on the fact that the query 
includes a filter condition (T1.y <= 3) that is applied on T1, which holds a standard SQL statement. The 
query compiler of the Integrated Polyglot component can identify an optimization and can push down this 

 
3 https://www.mongodb.com/ 

https://www.mongodb.com/
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filtering in the T1 itself, in order for the results of the latter to be much less, as the filtering will be applied 
at the external datastore level. 

Apart from being able to send native or SQL queries, the INFINITECH Common Query Language also allows 
table functions to be defined as expressions in a scripting language (i.e. Python, JavaScript). This is useful 
when datastores offer only API-based query interface and do not simply allow connections where the user 
submits a query statement. These scripting expressions can either return the returned tuples into a table-
like result set or return an iterable object representing the result set, as the example above with MongoDB. 
Moreover, the INFINITECH Common Query Language can use as input the result of other subqueries, thus 
allowing for nested queries.  

Last but not least, in the same way it is possible for traditional data management systems to create views 
or stored procedures, our language allows to create named expressions via the corresponding command. 
These expressions are defined during the execution of this command and stored in the global catalogue and 
can be later re-used and referenced by other queries. This can be of great importance for the data analysts 
who do not understand the deep details and unique characteristics of each of the underlying datastores, 
rather than they are interested in executing statements and make their analysis on the results. The data 
scientist or administrator who fully understands the underlying data technologies and the specifics of the 
data organization can prepare those named expressions to be frequently re-used. 

3.2 Bind Join 
As we have mentioned in section 2, one of the problems of the polystore systems is their inefficient 
implementations of join operations when they need to combine data coming from several data sources. 
They either retrieve all intermediate results of the involved subqueries in memory or apply the operation 
using massive parallelism, or they tend to move the datasets across the data stores in order to perform the 
operation at the lower level, without though avoiding the movement of the large amount of data 
containing the majority of the intermediate results. The Integrated Polyglot component of INFINITECH 
instead, makes extensive use of bind joins, a technique firstly proposed by IBM that has been later 
described thoroughly in the literature [19]. It allows performing semi-joins across datastores efficiently, by 
rewriting the subquery statement in order to push down the join conditions. This means that the distinct 
values of the attribute(s) that are involved in the join condition that are retrieved by the left operat (the 
subquery that is on the left side of the join clause) is passed as a filter to the right operat, through an in 
clause. The following example aims to clarify this: 

A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a) 

B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b) 

SELECT a.x, b.y FROM b JOIN a ON b.id = a.id 

 

In this example, we have two subqueries projecting their ids and values from a selection over two tables 
(one per subquery), and an equity join operation on those subqueries over their ids. The query optimizer 
will make use of the bind join technique and will bound the results of the left operat to the right-hand side 
of the operation. During the query execution, the relation B will be retrieved from the DB2 datastore using 
its own query mechanism. Then, the Integrated Polyglot Persistent component will make use of the list of 
the distinct values of B.id and will push them into an in operation down to DB1 to filter the values of the 
selection of the table A. Assuming the list of values of B.id are [b1, b2 …. bn], the query A will be 
transformed as follows: 

SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn) 

 

In case of native queries, the compiler cannot re-write the query in the native subquery, and therefore, the 
data scientist or application developer has to explicitly declare its use in the script, making use of a JOINED 
ON clause in the signature of the named table, as the example below that involves a native script compliant 
with the MongoDB interface. 

A(id int, x int JOINED ON id 
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    REFERENCING OUTER AS b_keys)@mongo = 

{*  return db.A.find( {id: {$in: b_keys}} );  *} 

 

In this example, the in clause of the native statement will take as parameters the values of the outer 
intermediate result that is being passed into the b_keys reference. By doing this, the query executor is 
enforced to submit firstly the subquery A in order to retrieve the values to be further used in the reference 
parameter, to then provide this reference to the native query. 

Even if the bind join technique seems very promising and reduces a lot the execution time and data 
movement, thus making the execution of the query much more efficient, it is not a panacea and is 
restricted by several causes which can create an important overhead. Firstly, the bind join operation 
demands that the query executor waits for the completion of the execution of one of the two operats, in 
order to retrieve all required values, before pushing them down for filtering out the results of the second 
operat. Secondly, if the number of distinct values of the join attribute that will be pushed down is large, the 
bind join operation may slower down the performance as it will require to send a lot of data via the 
network, while the selectivity of the data on the second operat will not be adequate enough to filter out 
values, and as a result, neither the query execution time on the second subquery will be reduced, nor the 
amount of retrieved data will be lowered. Due to this, it is important for both external datastores to expose 
a cost model in order for the query optimizer to predict the number of rows and distinct values that each of 
the subqueries is expected to return. However, if a native query is involved (thus, the query compiler 
cannot understand what this is about, as it sees it as a black box) or the cost information is not available, 
the query can still take this decision, but on the runtime: it will attempt to perform a bind join, it will start 
collecting the intermediate results of one of the two operats, and if the number of the distinct join keys 
exceeds a certain threshold, then execution will fall back to an ordinary hash join (as bind joins can be used 
over equity joins). In any case, the data scientist and application developer have the best of the knowledge 
of the data distribution and can explicitly request the execution of a bind join by using the reserved word 
BIND in the statement (i.e. FROM b BIND JOIN a). 

3.3 MFR Extensions 
To address distributed processing frameworks (such as Apache Spark) as data stores, the INFINITECH 
Common Query Language introduces a formal notation that enables the ad-hoc usage of user-defined 
map/filter/reduce (MFR) operators as subqueries to request data processing in an underlying big data 
processing framework (DPF) Error! Reference source not found.. An MFR statement represents a sequence 
of MFR operations on datasets. In terms of Apache Spark, a dataset corresponds to an RDD (Resilient 
Distributed Dataset – the basic programming unit of Spark). Each of the three major MFR operations (MAP, 
FILTER and REDUCE) takes as input a dataset and produces another dataset by performing the 
corresponding transformation. Therefore, for each operation there should be specified the transformation 
that needs to be applied on tuples from the input dataset to produce the output tuples. Normally, a 
transformation is expressed with an SQL-like expression that involves special variables; however, more 
specific transformations may be defined through the use of lambda functions. Let us consider the following 
simple example inspired by the popular MapReduce tutorial application “word count”. We assume that the 
input dataset for the MFR statement is a text file containing a list of words. To count the words that contain 
the string ‘cloud’, we write the following composition of MFR operations: 

T4(word string, count int)@spark = {* 

   SCAN(TEXT, 'words.txt') 

  .MAP(KEY, 1) 

  .REDUCE(SUM) 

  .FILTER( KEY LIKE '%cloud%' ) 

*} 

 

For defining map and filter expressions, the special variable TUPLE which refers to the entire tuple, can be 
used. The variables KEY and VALUE are thus simply aliases to TUPLE[0] and TUPLE[1] respectively. 
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To optimize this MFR subquery, the sequence is subject to rewriting according to rules based on the 
algebraic properties of the MFR operators, as explained in Error! Reference source not found.. In the 
example above, since the FILTER predicate involves only the KEY, it can be swapped with the REDUCE, thus 
allowing the filter to be applied earlier in order to avoid unnecessary and expensive computation. The same 
rules apply for any pushed down predicates, including bind join conditions. 
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4 Design of Integrated (Polyglot) Persistence 
This section will illustrate the basic architectural principles that the Integrated Polyglot component of 
INFINITECH follows and will focus on the details of the overall design of the proposed solution. Moreover, it 
will give some technical insights on how the integrated query processing can be executed in parallel and 
how the high expressivity of the INFINITECH Common Query Language fits together with the design of the 
implementation. 

4.1 Basic Architectural Principle: The mediator/wrapper 
paradigm 

During the state-of-the-art analysis on the area of the polystore systems, it was clear that most of the 
proposed solutions rely on the mediator/wrapper paradigm, or modifications of it, which tend to be widely 
used when there is the need to access data and information coming from several external data sources that 
are both diverse and heterogeneous. This heterogeneity is highlighted by the fact that they not only 
provide different means and protocols for connectivity, exposing different APIs and making use of different 
types of drivers required to establish a connection, but they are also compatible with different query 
scripting languages. To make things worse, each of the data store may have its own data model to store 
data and return results (i.e. a relational model in traditional relational database management systems and a 
JSON schema in document-based datastores), and according to the data source, data might be structured, 
semi-structured or totally unstructured. Due to this, it is very complex to implement a unique way to 
execute query statements and access integrated data spanned among different stores.  

In order to facilitate the implementation of a polystore, the mediator/wrapper paradigm that aims to hide 
the implementations details of the data connectivity and data access at a lower level, is introduced 
providing generic interfaces of which the query engine can make use in order for the execution of the query 
to become transparent regardless the target datastore. Following this approach, a central building block in 
terms of a component diagram (i.e. it does not have to be a centralized component, rather that it can be 
implanted in a distributed manner) it is the mediator that is responsible of the orchestration of the 
execution of the query statement. In order to access data and retrieve the results, it makes use of the 
wrappers, which hide the complexity and the internal details of how to access data and retrieve the 
intermediate results. Wrappers themselves can also be implemented in a distributed manner, thus allowing 
for intra-operation parallelism, if we consider that the data retrieval from an external datastore is a single 
operation in the query execution tree, no matter the complexity of that operator. 

Each wrapper is responsible to handle a specific type of a datastore. The polystore supports as many 
different types of external datastores given the wrapper implementations for those datastores are available 
and supported by the former. The wrapper provides the following functionalities: 

• It retrieves a subquery in a predefined format (i.e. it can be a standard SQL statement, a native 
query, or an agreed model of the subquery in a structured way) 

• If not a native query, it translates the input to a query that is compatible and equivalent to the 
supported dialect and query interface that the target datastore accepts 

• It can establish a connection to the target datastore. Internally, it makes use of a data connector 
subcomponent that holds the specific driver to the target datastore, and has implemented all the 
details on how to open, maintain, close a connection, send statements and receive results over that 
connection according to the protocol with which the datastore is compatible. The internal details 
are irrelevant from the wrapper’s point of view, so it might use a pool of connections and do 
whatever type of optimization it considers necessary, as long as it does not violate the agreed 
protocol with the datastore. 

• It is able to retrieve data over that connection, iterate over the return result and close the 
connection (via the interfaces exposed by the data connector) once the data has been returned. 
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• It is responsible for transforming the data coming from the target datastore into the common data 
model that the whole solution is using, and for returning the results back. The retrieved data are 
being transformed to tuples yield to a named table expression that the core of the Integrated 
Polyglot makes use of. 

• (Optional) It may implement a cost estimation model. A requirement for this to happen is that 
ability of the wrapper to request statistics from the target datastore, which is possible only if the 
latter is able to expose this kind of information. This includes types of indexes, number of rows per 
table, information about the histogram of the tuples over the indexes, number of hits, history of 
submitted query statements, etc. 

• (Optional) It may be able to transform the incoming query, explore different query execution plans 
by applying various transformation rules, and re-write the query to an equivalent one that can 
improve the overall execution. In order for this to be possible, it is required that the wrapper can 
perform a cost estimation model that would be taken into account by its query optimizer when 
investigating the cost of the explored query execution plans. 

On the other hand, the mediator, as the central building block in this architectural paradigm orchestrates 
the whole query execution of the integrated statement and makes use of the available wrappers. It receives 
as an input the submitted integrated statement that consists of one or more subqueries, each of those  
targeting a specific external datastore. Internally, it contains a query compiler that is capable of 
transforming the script into a structured query plan that can be parsed by the query planner. The latter 
explores and suggests alternative and equivalent query plans for execution. For instance, in case a 
subquery is a standard SQL statement, it can be decided to push some filter operations down to the 
external datastore engine in order to reduce the amount of data that will be transmitted across the 
network and the amount of memory that will be required to process the intermediate result. In case that 
the external datastore can provide statistics that can be taken into account by the cost estimation model of 
the mediator, then further improvements can be decided on the preparation phase of the execution, as it 
was highlighted in the case of the bind joins in section 3.  

At the end of the preparation phase, the query plan to be executed has been decided, which consists of the 
subqueries that need to be executed in the target datastores. The mediator then sends these queries into 
the corresponding wrapper and retrieve the results in the form of a named table expression, or a virtual 
table. To do so, it provides a common interface that all wrappers must implement, in order for the overall 
execution to be transparent from the mediator point of view. As a result, it uses this interface to submit the 
corresponding subquery and retrieve the result in the agreed format, hiding all the complexities for data 
connectivity and data access to the wrapper, following the separation of concerns concept that is of major 
importance in the development of system and software solutions. Finally, it merges the results and returns 
the result set back to the data scientist or application developer.  

The bird-eye-view of this architecture principle that the INFINITECH Integrated Polyglot component follows 
can be depicted in Figure 1. 
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Figure 1: The Mediator/Wrapper paradigm in INFINITECH Polyglot Persistence 

The data scientist or application developer submits an integrated query in the system for execution. This is 
being done in a seamless way, using a unique interface which is the standard JDBC. The integrated query 
arrives to the mediator component that starts the preparation phase. As explained previously, it compiles 
the query and transforms it in a structured way for further processing and it communicates with the 
planner that explores the space of possible query transformations into equivalent ones. Then it 
communicates with the optimizer which takes the responsibility to estimate the most cost effective one, 
taken into account its own cost estimation models (i.e. pushing down a filter and projection operations 
before the selection is always more efficient than applying those operations after the data has been 
retrieved from the datastore). When the optimizer decides about the plan to be executed, then the 
mediator sends the several subqueries down to the corresponding wrappers by invoking the common 
interface that each of the wrapper implements. At that point, it is totally transparent to the mediator how 
the data will be retrieved, as this logic is hidden by the wrappers themselves. They are responsible to 
establish the connection to the target datastore, send the query for execution, retrieve the results and 
return them back to the mediator in a form of a virtual table. The latter receives the intermediate results, 
applies the join operation and return the data in the form of a ResultSet back to the user via the JDBC 
connection.  

According to the capabilities of each of the target datastores, the intermediate result might be returned as 
a whole where the execution of the subquery has been finished, or might return via batches. In the first 
case, the mediator has to wait for the execution to be completed before continuing on the execution of the 
operation that is placed in the upper node of the query tree. This is not efficient enough, as it will block the 
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overall execution waiting for this operation (the intermediate data retrieval through the wrapper) to be 
finished first. If the external datastore is capable of returning the results in batches, the overall execution 
can be much more accelerated, as the data pipeline that is being established by the mediator can be 
executed on the fly, as data are received, without the need to block the execution and have to maintain all 
data in memory. Taking into account that the mediator has to perform one of the most expensive 
operations, the join, this can be of great benefit: This will allow the execution of merge joins in case the join 
attributes are ordered over an index, and will also improve the execution of nested-loop joins and hash 
joins, as the nested loop will be sent to the right-hand operat the moment the data arrives from the left-
hand, while the hash in the hash join can release resources much more easily. 

It is important to highlight at this point the fact that the mediator along with the planner and optimizer are 
internal parts of the INFINITECH central data repository, with the appropriate extensions that are planned 
in order to take into account the additional requirements that the polyglot engine introduces. As a result, 
the INFINITECH Integrated Polyglot component does not have to re-create the join operations, but instead, 
it can rely on the core of the query engine of the data repository. As explained in more details in the 
corresponding deliverables of T3.1 “Framework for Seamless Data Management and HTAP” (D3.1, D3.2 and 
D3.3), its query engine provides massive parallelism processing and provides intra-query and intra-
operation parallelism, making the execution of these types of operations much more efficient. The scope of 
this deliverable is to provide technical information on the polyglot extensions and not to give more insights 
on the query engine as a whole, which is part of T3.1. 

4.2 Parallel Integrated Processing using the INFINITECH Common 
Query Language 

As it has been analysed in D3.1, the distributed query engine of the INFINITECH central data repository is 
designed to be integrated with arbitrary data management clusters, which can store data in their natural 
format, without the need for pre-processing in order to be transformed to a compatible data schema, and 
can be retrieved in a parallel fashion by either executing declarative queries or by running specific scripts. 
The query engine supports a variety of diverse data management clusters, from distributed raw data files, 
parallel SQL database management systems, sharded NoSQL databases and parallel processing frameworks 
such as Apache Spark. To that sense, the query engine of the data repository of the platform can be 
integrated with the Integrated Polyglot component and thus transform it into a powerful big data lake 
polyglot engine that is capable of taking the full advantage of both expressive scripting and massive 
parallelism. Moreover, as it was described in the previous subsections that the integral query engine of the 
INFINITECH data repository supports the efficient execution of a variety of implementation of the join 
operator, and by providing intra-operator parallelism; these operations can be executed in a distributed 
manner, in parallel. As a result, joining data coming from native datasets being stored in external 
datastores along with the internal data tables of the repository itself can be applied exploiting the most 
suitable implementation that will exploit efficient parallelism. To highlight that fact, we will illustrate in the 
following examples how the execution of a parallel join operation across a relation table and the result of a 
JavaScript subquery to a document-based datastore like MongoDB is being done, along with the join of a 
data table with an MFR query, using the INFINITECH Common Query Language and the Integrated Polyglot 
Persistence. 

Let’s assume that we have a table (collection in MongoDB terminology) called orders with the following 
data schema: 

{order_id: 1, customer: "ACME", status: "O", 

 items: [ 

  {type: "book", title: "Book1", author: "A.Z.", 

          keywords: ["data", "query", "cloud"]}, 

  {type: "phone", brand: "Samsung", os: "Android"} 

] }, ... 
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This is an example of semi-structured data as each of the records in the orders, contains an array of items, 
whose attributes differ according to the type. We need to return the title and the author of all books in the 
orders by a given customer. This can be expressed with a flatMap operation in JavaScript and a MongoDB 
find() operation. This can be depicted in the following code listing, where this expression is being wrapped 
into a named table expression of the INFINITECH Common Query Language: 

BookOrders(title string, author string,  

           keywords string[])@mongo = 

{* 

  return db.orders.find({customer: "ACME"}) 

  .flatMap( function(v) { 

    var r = []; 

    v.items.forEach( function(i){ 

      if (i.type == "book") 

        r.push({title:i.title, author:i.author, 

                keywords:i.keywords}); 

    } ); 

    return r; }); 

*} 

 

We can see from the above code listing that we define a virtual table called BookOrders with the specified 
signature (title column as a String, author column as a String, etc.) which will be executed in the @mongo 
external datastore, using a native script (as indicated by the {* *} brackets) where we place the flatMap 
inside the find() MongodB operation. Furthermore, we need to join the result of this with a table named 
authors that is being stored inside the central data repository. The integrated statement according to the 
INFINITECH Common Query Language will be the following: 

SELECT B.title, B.author, A.nationality 

FROM BookOrders B, Authors A 

WHERE B.author = A.name 

 

This involves an equity join operation over a scan operation on the right-hand and a polyglot operation on 
the left. Let’s assume for simplicity reasons that the query optimizer decides to use a nested-loop join 
operation. In what concerns the scan operation over the internal data table, this can be executed in parallel 
due to the distributed data management clustering that supports this. Regarding the polyglot operation, 
this is related to whether the wrapper can be executed in parallel or not. In any case, the nested-loop join 
operation also supports intra-operator parallelism. This means, that the data pipeline of the integrated 
query plan can be configured and once data is retrieved by the polyglot operation, then the nested loop 
implementation of the join, can use the hashcode of the join attribute and send the tuple to the related 
worker to execute the right-hand of the join, as explained in details in D3.1. 

Additionally, we can have a more sophisticated data transformation logic needs to applied over the 
unstructured data before being able to be processed by relational operators. In the following example, we 
need to analyse the logs of a scientific forum in order to identify the top experts for particular keywords, 
assuming that the most influencing user for a given keyword is the one who mentions the keyword most 
frequently in their posts. We assume that the application keeps the log data in the non-tabular structure 
that is depicted below: 

2014-12-13, http://..., alice, storage, cloud 

2014-12-22, http://..., bob, cloud, virtual, app 

2014-12-24, http://..., alice, cloud 

 

There are text files where a single record corresponds to one post which contains a fixed number of fields 
about the post itself (timestamp, link to the post, and username in the example) followed by a variable 
number of fields storing the keywords mentioned in the post. The unstructured data needs to be 
transformed into the following tabular format: 
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KW        expert   frequency 

cloud     alice    2 

storage   alice    1 

virtual   bob      1 

app       bob      1 

 

Such transformation requires the use of programming techniques like chaining map/reduce operations that 
should take place before the data is involved in relational operators. This can be expressed with the 
following MFR subquery with embedded Scala lambda functions to define custom transformation logic: 

Experts(kw string, expert string)@spark = {* 

  SCAN( TEXT, 'posts.txt', ',' ) 

  .MAP( tup=> (tup(2), tup.slice(3, tup.length)) ) 

  .FLAT_MAP( tup=> tup._2.map((_, tup._1)) ) 

  .MAP( TUPLE, 1 ) 

  .REDUCE( SUM ) 

  .MAP( KEY[0], (KEY[1], VALUE) ) 

  .REDUCE( (a, b) => if (b._2 > a._2) b else a ) 

  .MAP( KEY, VALUE[0] ) 

*} 

 

Skipping the details of(?) the MFR query, we can see that we define a named table expression called 
Experts, which provides its signature and makes use of a native MFR query. We further join this table with 
the BookOrders that will be defined earlier and whose data are persistently stored in the MongoDB. We can 
write the integrated query in the following way: 

SELECT B.title, B.author, E.kw, E.expert 

FROM BookOrders B, Experts E 

WHERE E.kw IN B.keywords 

 

We illustrate in this example how the bind join supported by the Integrated Polyglot component can be 
used for optimal execution of this query. In this case, the bind join condition (which involves only the kw 
column) can be pushed down the MFR sequence as a FILTER operator. As per the MFR rewrite rules, this 
would take place immediately after the FLAT_MAP operator, thus reducing the amount of data to be 
processed by the expensive REDUCE operators. To build the bind join condition, the query engine flattens 
B.keywords and identifies the list of distinct values. 

By processing such queries, the distributed query engine of the INFINITECH central repository can take 
advantage of the expressivity of each local scripting mechanism, enabled via the use of the Common Query 
Language of the platform, yet allowing for results of subqueries to be handled in parallel by the query 
engine itself and be involved in operators that utilize the intra-query parallelism. The query engine 
architecture is therefore extended by the implementation of the Integrated Polyglot Persistence to access 
in parallel shards of the external data store through the use of DataLake distributed wrappers that hide the 
complexity of the underlying data stores’ query/scripting languages and encapsulate their interfaces under 
a common DataLake API to be interfaced by the query engine. 

  



D3.5 – Integrated (Polyglot) Persistence - II 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 21 of 37 

5 Implementation of the Integrated (Polyglot) 
Persistence 

This section illustrates the initial implementation of the Integrated Polyglot Component, giving some high-
level overview of how the code is organized along with code examples in the form of pseudo code. As it has 
been already mentioned, at this phase of the project, a wrapper that is capable of accessing data that is 
stored in a traditional relational database management system has already been implemented. The 
purpose of this section is to focus on the implementation related to the Integrated Polyglot component, 
and not to give more details on the overall query engine of the INFINITECH central repository. For that, a 
class diagram regarding how the code of the wrapper has been organized, giving analytical details of the 
functionalities provided by the code, along with a more detailed explanation provided with a pseudo code, 
that can be used as a roadmap for the implementation of the additional wrappers that need to be 
implemented in order to access code that is stored in other types of datastores. 

5.1 Abstract Wrapper Implementation 
In order to be able to implement wrappers for the corresponding external datastores, various interfaces 
have been defined that can be used by the mediator component, which is part of the query engine of the 
central data repository. As already explained, having generic interfaces makes it possible for the mediator 
to handle all different types of external datastores, in a unified manner. To test our design, we 
implemented a wrapper as a proof-of-concept, and we assume that it can be used to establish connections 
and access data in a traditional SQL-compatible relational datastore. We call our mock datastore as rdb. The 
class diagram is depicted in Figure 2. 

 

Figure 2: RDBWrapper class diagram 

From the figure above, we can see that each wrapper must implement the AutoLoadTableFunction. As it 
has already been mentioned, a subquery is being submitted either in declarative language, or via a scripting 
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expression, and it formulates the table function. For our implementation of the rdm wrapper, the 
RDMTableFunction class implements this interface. Upon initialization of the query engine, this class is 
loaded via Java Reflection. It implements two methods: getFunctionName which returns the name of the 
wrapper, which in our case will be ‘rdb’, and the eval which returns a ScannableTable object, which 
implements the business logic that the wrapper is actually doing. To make things clearer, let’s assume we 
have the following statement in the INFINITECH Common Query Language: 

A(id int, x int)@RDB = (SELECT a.id, a.x FROM a) 

 

This illustrates a subquery that will be executed in the @RDB wrapper. In that case, the query engine holds 
a map with all the wrappers, along with their names, so this code will be passed to the RDMTableFunction 
to be executed. The eval method expects two string arguments: the subquery to be executed and the 
signature of the result. In this example, the query will be the (SELECT a.id, a.x FROM a) statement, and the 
signature the (id int, x int). 

The query engine invokes the eval method to get the results, and the latter returns an implementation of 
the ScannableTable. The latter extends the Table interface, and it will be used by the query engine as it 
consists of the polyglot operation that is part of the data pipeline established by connecting the various 
operations needed to retrieve data according to the tree of the query plan. It defines various methods that 
are relevant to the query engine itself for creating the list of equivalent query trees and for providing 
information to the query optimizer, along with information needed for the real-time execution of the 
operator. The functionality and rationale of these methods are beyond the scope of this deliverable, apart 
from the scan. This is used by the query engine to retrieve the Enumerable object that will return the row 
data transformed to the common model, as retrieved by the external datastore.  

The Enumerable object returns an implementation of the Enumerator interface, which implements the 
methods that actually access data in the external datastore. As an enumerator, it defines methods for 
closing the object, which will imply to close the connection to the external database, check if there are 
more data to be returned, reset the pointer to the first tuple of the retrieved data, and to actually return 
the tuple, via the current tuple. In our implementation, the RDMEnumerator implements this logic, and the 
next subsection goes deeper into the details, with pseudo code snippets. 

5.2 RDM Wrapper Implementation details 
From the previous subsection, the main interfaces that the developer of a wrapper should provide to the 
INFINITECH Integrated Polyglot component in order to grant access to an external datastore, are the 
following: 

• AutoLoadTableFunction 

• RDMEnumerator 

All other interfaces are being provided by the core of the query engine of the INFINITECH central repository 
and its polyglot extensions. Regarding the AutoLoadTableFunction, this interface defines two methods. The 
first one, returns the name of the wrapper so that the query engine can be informed that there is an 
additional polyglot operator to be taken into account and might be addressed by a subquery of an 
integrated statement. The following code illustrates its implementation: 

public static String getFunctionName(){ 

 return "rdb"; 

} 

 

We have named our wrapper as rdb, in the sense that it is targeting an external relational database 
management system, therefore, this term will be used in the integrated statement in order to drive the 
component to use this implementation when addressing subqueries with the @rdb indicator. 
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Moreover, the eval method returns an implementation of the ScannableTable interface, which extends 
others that are necessary from the query engine to manipulate these types of objects. A pseudo code 
snippet for implementing this method can be the following: 

public ScannableTable eval(final String query, final String schemaDefinition) {  

  //parse the schemaDefinition to grab the field names and types 

 String [] fieldNames = getFieldNamesFromSignature(schemaDefinition); 

 SqlTypeName [] fieldTypes = getFieldTypesFromSignature(schemaDefinition); 

   

  return new ScannableTable() { 

   @Override 

   public Enumerable<Object[]> scan(DataContext dc) { 

    return new AbstractEnumerable<Object[]>() { 

    @Override 

    public Enumerator<Object[]> enumerator() { 

     return new RDMEnumerator(query, fieldNames, fieldTypes); 

    } 

   }; 

   } 

 

   @Override 

   public RelDataType getRowType(RelDataTypeFactory relDataTypeFactory) { 

    return getRowType(relDataTypeFactory, fieldTypes); 

   } 

 

   @Override 

   public Statistic getStatistic() { 

    return Statistics.UNKNOWN; 

   } 

 

   @Override 

   public Schema.TableType getJdbcTableType() { 

    return Schema.TableType.TABLE; 

   } 

 

   @Override 

   public boolean isRolledUp(String string) { 

    return false; 

   } 

 

   @Override 

   public boolean rolledUpColumnValidInsideAgg(String string, SqlCall sc, SqlNode sn, 

CalciteConnectionConfig ccc) { 

    return false; 

   }    

  }; 

 } 

In this pseudo code, it is depicted that a new instance of the ScannableTable interface is being created and 
its methods are overridden by the implantation needed by this specific wrapper. It illustrates that at the 
beginning, the String containing the schema definition is being parsed because this information will be 
needed during the scanning phase, in order to transform the data to the common model that has been 
defined by the integrated statement. Then, the scan method creates a new Enumerator object, which is the 
RDMEnumerator which has been provided for this wrapper. It is important to be highlighted at that point 
that custom enumerator defines a constructor whose arguments must be the column names and types of 
the signature. By doing that, the instantiation object of this class will have all this information available in 
order to proceed for the proper transformation of the retrieved data. 

Regarding the RDMEnumerator class itself, there are several methods that need to be implemented by the 
interface. An additional one with private visibility which manages to open and establish a connection with 
the target datastore, has been introduced. 

private void init() { 

 if(it is already opened) { 
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  return; 

 } 

  

 try { 

  this.connection = createConnection(connection arguments) 

  this.stametement = this.connection.createStatement(); 

  this.resulSet = this.stametement.executeQuery(query); 

 } catch(SQLException | SAFFederatorException | CQEException ex) { 

  throw new RuntimeException(ex); 

 }  

  

 setAlreadyOpen(); 

} 

 

This method checks if the connection to the external datastore is already open, and if not, it establishes a 
connection, creates the statement object according to the JDBC standard, and executes the query, storing 
the result set that needs to be parsed later in order to retrieve and transform the data. It is worth to be 
mentioned that this pseudo code is illustrating a very basic implementation of a relational wrapper which 
executes the query and waits for the result. The execution of the query might be a blocking operation or 
not, depending on the type of the query and the implementation of the JDBC driver of the specific 
datastore. A more sophisticated approach would be to open a new thread that will be responsible to 
execute this query in parallel with the preparation of the query engine to settle the data pipeline and begin 
to request data. This thread could retrieve the data in parallel and feed the result in a blockingqueue that 
could be used as the pipeline of this thread and the thread opened by the query engine to execute these 
lines of code. As a result, the data will be available when the query engine will start fetching them, as the 
corresponding method would pick them from this blockingqueue that would have been already started to 
be filled with row data from the external datastore.  

Regarding the moveNext method, it has to check whether or not there are more data to be retrieved from 
the external datastore. A code snippet could be the following: 

@Override 

public boolean moveNext() { 

 init(); 

 return this.iterator.moveNext(); 

} 

It firstly checks if the connection is already opened, and if not, it establishes the connectivity. As a result, 
the very first time that this method will be invoked, the wrapper will open the connection to the external 
datastore and will execute the query. As we are mocking a traditional relational database management 
system that provides a JDBC interface, this code relies on its implementation to check this. In the more 
sophisticated approach with data being retrieved in a parallel thread, this code will have to fetch data from 
the blockingqueue until an END_FLAG is received, that will signal the end of the dataset, and the code will 
be unblocked and return false. 

The current method returns the current tuple of the retrieved data. A pseudo code could be the following: 

@Override 

public Object[] current() { 

 return this.iterator.current(); 

} 

 

As the RDMEnumerator mocks a JDBC compliant datastore, this code relies on its implementation to return 
the current data. It is important to be mentioned here that as both stores, the external one and the 
polyglot, are relational data stores, there is no need for data transformation. However, in case of a 
document-based datastore or a Hadoop Data lake, the code snippet would have to transform the raw data 
into the corresponding format, before sending back the array of objects to the query engine and the 
mediator. 
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The reset method has to set the pointer in the first row of the retrieved dataset. In our case, this operation 
is not supported by the JDBC standard, so the code snippet must not allow this, and indeed, it throws a 
runtime exception as follows: 

@Override 

public void reset() { 

 throw new UnsupportedOperationException("Reset operation is not supported by the " + 

this.getClass().getSimpleName() + ".");  

} 

 

Finally, when all data has been retrieved by the query engine, the latter closes the enumerator. The 
implementation of the corresponding method must close all open connections and release all resources 
that have been reserved for the execution of this subquery. 

@Override 

public void close() { 

 try { 

  if((this.resultSet!=null)&&(!this. resultSet.isClosed())) { 

   this. resultSet.close(); 

  } 

 } catch(IOException ex) { 

  Log.warn("Could not close iterator {}. {}", this. 

resultSet.getClass().getSimpleName(), ex); 

 }  

 try { 

  if((this.statement!=null) && (!this.statement.isClosed())) { 

   this.statement.close(); 

  } 

 } catch(SQLException ex) { 

  Log.warn("Could not close statement for retrieving tuple. {}", ex); 

 }  

 try { 

  if((this.connection!=null) && (!this. connection.isClosed())) { 

   this. connection.close(); 

  } 

 } catch(SQLException ex) { 

  Log.warn("Could not close connection to datastore. {}", ex); 

 } 

} 
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6 Real-Time Data Warehouse 
In this section, we describe a novel architecture that we propose. It is called real-time data warehouse and 

it can be used to overcome inherit technological barriers of modern approaches when having to deal with a 

vast amount of data that becomes obsolete after a certain period of time and is widely characterized as 

historical. This data needs to be moved to a data warehouse to offload the operational datastores that 

have different types of query processing capabilities and the focus is mainly to ensure database 

transactions. Our implementation is based on the polyglot engine that has been developed during the first 

phase of task T3.2 (“Polyglot Persistence over BigData, IoT and Open Data Sources”) and has been 

presented in the previous sections. Here, at first the motivation behind our solution is described, then the 

basic principles, requirements and architectural components are also described and finally, the details on 

how the algorithms behind the query processing are implemented and how this approach ensures data 

consistency in terms of database transactions. 

6.1 Motivation 
As modern enterprises in finance and insurance sectors currently have to deal with a vast amount of data, 

the majority of this information eventually becomes obsolete. The result is that data kept by these 

enterprises can be categorized as current and historical.  The data management systems are continuously 

being ingested with fresh data coming from various sources. Examples can be found in various domains. For 

instance, IoT sensors installed in a vehicle are continuously feeding with such information an insurance 

company, which is the scenario of pilot#11 (“Personalized insurance products based on IoT connected 

vehicles”). Moreover, finance currencies are being ingested in a per-second frequency to the management 

system of finance companies that consult about risk assessment, which is the scenario of pilot#2 (“Real-

time risk assessment in Investment Banking”). What is more, online finance transactions are being stored, 

so that can be later used in order to detect anti-money laundering activities and to avoid financial crime. 

This is the scenario of pilot#7 (“Avoiding Financial Crimes”) and pilot#8 (“Platform for AML supervision 

(PAMLS)”). 

In all these scenarios, there is the need to deal with current data that are useful for real time detection or 

other operations that require the assurance of data consistency, but they also require to effectively 

manage the vast amount of data that has become obsolete and can now be considered as historical. The 

importance of keeping historical data is evident, as they feed AI algorithms that can be combined with 

current data. In order to cope with both current and historical data, two common design patterns are 

widely used nowadays. 

The first pattern is commonly referred as lambda architecture, which combines techniques from batch 

processing with data streaming to be able to process data in a real-time manner. The lambda architecture is 

motivated by the lack of scalability of operational SQL databases, which are used to store current data. The 

architecture consists of three layers: 

• Batch layer: It is based on append only storage, typically a data lake, such as the ones based on 

HDFS. Then, it relies on MapReduce for processing new batches of data in the forms of files. This 

batch layer provides a view in a read-only database. Depending on the problem being solved, the 

output might need to fully re-compute all the data to be accurate. After each iteration, a new view 

of the current data is provided. This approach is quite inefficient but solves a scalability problem 

that used to have no solution, the processing of tweets in Twitter. 

• Speed layer: This layer is based on data streaming. In the original system at Twitter, it was 

accomplished by the Storm data streaming engine. It basically processes new data to complement 
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the batch view with the most recent data. This layer does not aim accuracy, but instead aims at 

providing more recent data to the global view achieved with the architecture. 

• Serving layer: The serving layer processes the queries over the views provided by both the batch 

and speed layers. Batch views are indexed to be able to answer queries with low response times 

and combines them with the real-time view to provide the answer to the query, combining both 

real-time data and historical data. This layer typically uses some key-value data store to implement 

the indexes over the batch views. 

 

Figure 3: Lambda Architecture 

The main shortcoming of the lambda architecture is its complexity and the need to have totally different 

code bases for each layer that have to be coordinated to be fully in sync. The maintenance of the platform 

is very hard since debugging implies understanding the different layers with totally different natures, 

technologies and approaches. 

Other more traditional architectures are based on combining an operational database with a data 

warehouse. The operational database deals with more recent data while the data warehouse deals with 

historical data. In this architecture, queries can only see either the recent data or historical data, but not a 

combination of both as it was done in the lambda architecture. In this architecture there is a periodic 

process that copies data from the operational database into the data warehouse. This periodic process has 

to be performed very carefully since it can hamper the quality of service of the operational database. This 

periodic process is most of the time achieved by ETL tools. This process is typically performed over the 

weekends in businesses where their main workload comes during weekdays. 
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Figure 4: Current-Historical Data Splitting Architectural Pattern 

Another problem with this architecture is that the data warehouse typically cannot be queried while it is 

being loaded, at least the tables that are being loaded. This forces to split the time of the data warehouse 

into loading and processing. When the loading process is daily, finally the day is split into loading and 

processing. The processing time consumes a fraction of hours of the day that depends on the analytical 

queries that have to be answered daily. It leaves a window of time for loading data that is the remaining 

hours of the day. At some point, data warehouses cannot ingest more data because the loading window is 

exhausted. We call this architectural pattern current-historical data splitting. 

In this pattern, data is split between an operational database and a data warehouse or a data lake. The 

current data is kept on the operational database and historic data in the data warehouse or data lake. 

However, queries across all the data are not supported with this architectural pattern. With the 

achievements of this task T3.2 (“Polyglot Persistance over BigData, IoT and Open Data Sources”), a new 

pattern, called Real-Time Data Warehousing, will be used to solve this problem. This pattern will be solved 

by a new innovation that will be introduced in INFINISTORE, namely, the ability to split analytical queries 

over the operational datastore and an external data warehouse. Basically, it will copy older fragments of 

data into the data warehouse periodically. INFINISTORE will keep the recent data and some of the more 

recent historical data. The data warehouse will keep only historical data. Queries over recent data will be 

solved by INFINISTORE, and queries over historical data will be solved by the data warehouse. Queries 

across both kinds of data will be solved using a federated query approach leveraging the polyglot 

capabilities to query across different databases and innovative techniques for join optimization. In this way, 

the bulk of the historical data query is performed by the data warehouse, while the rest of the query is 

performed by INFINISTORE. This approach enables to deliver real-time queries over both recent and 

historical, data giving a 360° view of the data. 

6.2 Design Principles and Requirements 
Our approach has been designed to allow datasets to be split over the operational datastore and a data 

warehouse, over a specific column or a group of columns. This means that we are able to split on one or 

more data tables that are part of the target datasets, using a column (or a group of columns) that belong to 

these specific data tables. An import requirement is that the column (or the group of columns) must 

contain values that are monotonically incremental. Such an example might be columns containing auto-

incremented values that are part of a primary key, timestamps, etc. This requirement might seem as an 

important constraint, but in reality, this covers the majority (if not all) of the use cases. The reader must 
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remember that we split a dataset that is becoming historical, leaving the current part in the operational 

datastore, while moving the historical part to the data warehouse. A dataset becomes historical over the 

time, and as a result, it will always contain a field that keeps the current timestamp at the time when the 

data row was added, or a field that is part of the primary key of the data table on which the row has been 

added. Getting back to our pilots that have been used as an example behind the motivation of our solution, 

all information contain a timestamp field: from the IoT datum coming from the deployed sensor, which 

provides information at a specific point in time, to the finance currency or finance transaction that takes 

place in a specific point in time.  

Another requirement is that the historical dataset should not allow updates or other data modification 

operations. However, this is the same requirement and constraint as the other architectural designs have: 

when moving data to a data warehouse, data is being dropped from the operational datastore and is 

moved to the data lake or warehouse. In those data management systems, updates are not feasible. We 

keep data that can be modified in the operational datastore of INFINISTORE, and we move the data after a 

point in time when the data can be considered as obsolete. The difference between our approach and the 

current-historical data splitting is that using the Real-Time Data Warehousing, query processing can be 

done live, getting into consideration both its current and historical part, while data is being moved and 

migrated from one data store to the other, ensuring database transactions and data consistency at the 

same time. This is due to the transactional engine of the INFINISTORE itself. More information will be given 

in the next subsections. 

Our implementation consists of the following main architectural pillars:  

• The INFINISTORE: This is the operational datastore of our solution. It can be continuously ingested 

with data at very high rates, exploiting its HTAP capabilities and Kafka connectors implemented 

under the scope of task T3.1 (“Framework for Seamless Data Management and HTAP”). It can hold 

the current part if the target dataset provides efficient query processing via its parallel OLAP 

engine, currently being implemented under the scope of the same task. What is also important to 

be mentioned, is that by exploiting its HTAP capabilities, it is now feasible to move data (which will 

imply the execution of an analytical query that involves a scan of a data table) while leaving the 

support for operational workload unaffected. This means, that we can move data without any 

downtime, which is the technological main constraint of the current-historical data splitting 

architecture. 

• The data warehouse: This is the data management system that will store the historical part of the 

dataset. Any kind of a data warehouse or data lake can be used as this part of our integrated 

solution. The only constraint at the point when this report was written, is for the data warehouse 

to expose a JDBC interface, in order to allow that type of data connectivity from the polyglot engine 

implemented in this task. In case that other types of data connections are supported, then the 

polyglot engine needs to be extended by implementing the corresponding wrapper, as explained in 

more detail in section 5.  

• The data mover: This component is responsible for moving data from INFINISTORE to the data 

warehouse. As it has already been mentioned, a data table is split according to a column. Let’s take 

the example of a timestamp. The data mover, periodically and according to the configuration put 

by the database administrator, requests a data slice from INFINISTORE to be stored to the data 

warehouse. It executes an analytical query on the INFINISTORE, on the specific timestamp, and 

when it retrieves the data, it stores it to the data warehouse. The transactional engine of 

INFINISTORE ensures that the result of a query execution to our integrated solution will always be 

equivalent as the dataset is stored in a single datastore, even if the data is being moved 

concurrently. In case of failures during the data migration process, a re-do pattern will be applied 
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that ensures that data will be eventually moved, stored in the data warehouse and dropped in the 

INFINISTORE. 

• The query federator: This component is responsible of executing a query over a dataset that has 

been split between the two datastores, returning an equivalent result as the datastore was kept in 

a single data management system, ensuring data consistency on the same time while data is being 

concurrently moved. It uses the polyglot engine that was developed during the first phase of task 

T3.2 (“Polyglot Persistance over BigData, IoT and Open Data Sources”). As the polyglot engine 

extends the query engine of INFINISTORE, federated queries targeting datasets split between the 

two datastores can be submitted via a standard JDBC interface. The query federator implements 

the logic for receiving the two parts of the dataset, taken into account that they have been split 

over a column (or group of columns). 

In the following subsections, we will provide detailed information on how the query federator executes the 

common SQL operators, and how our approach ensures data consistency in terms of database transactions 

while data is being moved from the operational datastore, the INFINISTORE, to the data warehouse. 

6.3 The Query Federator 
As was mentioned in the previous subsection, this component is responsible for executing a submitted 

query over a dataset that has been split between two different datastores. It is assumed that the data 

tables have been split over a column that contains a monotony incremental timestamp, without our 

assumptions to lose the general applicability of our solution.  

The query federator supports all standard SQL operations. In the following part of this section, we will 

provide details about the implementation of the most standard operations. It is important to mention that 

the query federator makes use of the polyglot engine of the INFINISTORE and in fact, it consists of a specific 

implementation of a wrapper, following the mediator-wrapper paradigm introduced and explained in 

section 4, based on the code presented in section 5. 

Full scan 

In case of full scans, the query federator opens two data connections to both INFINISTORE and the target 

data warehouse. By firstly retrieving the current value of the timestamp that has been split, and making use 

of the compiler of the CloudMdSQL that has been mentioned in section 3, it translates the query to a scan 

with a filter condition over the timestamp, with the value of the current timestamp that has just been 

retrieved. As a result, it will only retrieve the logical dataset that is part of the historical from the data 

warehouse, and the logical dataset of the current from INFINISTORE, no matter if the physical data co-exists 

due to a data movement process that is being performed at the same time. Data is being returned back to 

the upper layers of the query tree, as it is being received from the two datastores, unordered as the 

underlying executions is happening in parallel. 

Scan with conditions 

In case of conditions, the query federator still opens two data connections to both INFINISTORE and the 

target data warehouse and executes the same algorithm as in the case of a full scan. The difference is that 

the timestamp condition is being added as an additional AND condition over the original one. Data is being 

returned back to the upper layers of the query tree unordered, as it is being received from the two 

datastores, since the underlying executions are happening in parallel. 

Projections 
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In case of projections, they are being pushed down to the two datastores, so that we can minimize the 

amount of data that is being sent from both to the query federator. 

Order by 

In case that such an operator is enforced by the query federator (this implies that it has been pushed down 

for execution to this layer), then the latter still opens two data connections to both INFINISTORE and the 

target data warehouse and executes the same algorithm. The difference is that data is not being returned 

concurrently, rather than the two iterators are checking which value is greater (or smaller) and return back 

accordingly. It is evident that pushing down to the query federator such an operator, makes sense only 

when the ordering is over an index. 

Limit 

Whatever the overall submitted query, the query federator executes the corresponding algorithm, but 

keeps internally a counter to keep track of the number of rows that have been returned. When the counter 

reaches the value of the limit operation, it stops. 

Aggregations 

Firstly, it is important to highlight that the aggregation operators are the following: min, max, sum, count 

and avg. When an operation of this group is received for execution by the query federator, the latter 

pushes down such operations to both datastores and merges the intermediate results.  This is feasible as all 

these operators can be executed in a distributed manner: The min of the overall dataset is the minimum of 

the two intermediate minimums of the two-split dataset. The max is the overall max of the two 

intermediate maximums, the sum is the overall sum of the two intermediate summaries, while the overall 

count is the sum of the two intermediate-count of the historical and current datasets. The only tricky point 

here is the avg, as the overall avg is not the avg of the two intermediates, so this operator cannot be 

executed that way. However, the overall avg is the result of the overall sum divided by the overall count. 

Those two operators can be executed in a distributed manner and as a result, the query federator 

transforms internally the avg to such the sum / count. 

Group by 

The group by operation is used when there are corresponding aggregations. As a result, the query federator 

executes such operations as above. The difference is that instead of returning the overall result, it keeps in 

an internal cache the intermediate results: the key of the cache is the byte concatenation of the columns 

involved in the group by clause, and the value is the intermediate values. When both intermediate values 

that are associated with a specific key have been retrieved, the query federator calculates the overall value 

for that key and returns the result. When both iterators related with the two database connections finish, 

then it returns all remain values, as it might have been the case that a concatenate key exists only in one of 

the two logical datasets. 

Joins 

Here, the general case when both of the tables involved in a join operation have been split between the 

INFINISTORE and the data warehouse is going to be used. Then, the overall join is the union of four 

intermediate ones: one where data from both data tables is stored in the INFNISTORE, one where data 

from both data tables is stored into the data warehouse, and two additional ones that the data exists in 

both. As a result, the overall join is the algebraic production of those four, which are not overlapping and 

can be executed in parallel. For the local joins, they are being pushed down to the corresponding 

datastores. For the other two, we first execute a scan on INFINISTORE, to grab the data that participates in 

the join, and then the query federator retrieves the list of values that are involved in the equity of the joint 
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operation. Having that list, it transforms the operation into an in clause that is being sent to the data 

warehouse. In that case, the latter executes its part locally. Then, the query federator receives this data and 

merges it with the one that has been already received from the INFINISTORE. This technique has been 

already described in more details in section 3, and is widely used as bind join. Its advantage is that only the 

minimum amount of data that is required for the execution of the join is transferred. As a result, we 

minimize data transfer among the two datastores and the query federator. More information will be given 

in the next version of this report.  

6.4 Ensuring data consistency while concurrently moving data 
across the datastores 

In this subsection, we will justify how the implementation can ensure data consistency in terms of data 

base transactions: this means that the result of the execution of concurrent transactions while data is being 

moved from one store to the other, is equivalent to the result of the execution of the same query of over 

the same logical dataset that is being stored physically in a single datastore.  

Let’s assume there is a data table, split between the INFINISTORE and a data warehouse. It is also assumed 

that the split has been done over a timestamp column, whose current value is 2021-01-01. Without losing 

the general applicability of the proposed implementation, it is finally assumed that a full scan is performed 

over this data table as depicted in Figure 5.  

 

Figure 5: Simple full scan 

Here it is displayed the dataset split in 2021-01-01, and the query federator submits the query to be 
executed in both. According to the previous subsection, it will take the current split timestamp, whose 
value is 2021-01-01 and will transform the query accordingly. With the yellow line, the part of the dataset 
that will be scanned from both tables is displayed.  

Now, it is assumed that data will be moved and a data slice will have to be migrated from the INIFNISTORE 
to the data warehouse, as depicted in Figure 6. 
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Figure 6: Moving data from INFINITORE to the data warehouse 

The new split point will be now 2021-02-01 and the corresponding data slice, depicted with orange colour 

is being now moved to the data warehouse. It is also displayed that the data slice remains in INFINISTORE 

as this action takes place. This means that data now co-exists in both stores. However, the concurrent read 

operation marked in yellow, will only read the corresponding logical database, according to the initial 

timestamp that has been added by the query federator. It will never read any other data items that might 

be concurrently added, neither will it miss some data items, as the data slice still exists in the INFINISTORE. 

At this point, the scenario can be made even more interesting. Data has been moved, but has not been 

dropped yet from the ININISTORE, as the read transaction is being executed. In addition, another read 

transaction starts that needs to perform the same full scan. This transaction is depicted in Figure 7 

indicated in orange. As the new split timestamp is now 2021-02-01, the query federator will transform this 

operation accordingly by applying the filter condition with this value. From Figure 7 we can see, 

represented with the orange lines, the part of the physical dataset that will be accessed in both stores. 

Even if the yellow and orange transactions are accessing different physical datasets, the logical dataset is 

the same and the result of both operations is equivalent.  
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Figure 7: Second read transaction while data is being moved 

Eventually, the yellow read transaction finishes after scanning the full logical data table that is split 

between the two datastores. At this point, as depicted in Figure 8, data still co-exists in both stores, 

however now there is only one read operation that access the logical dataset. 

 

Figure 8: First read operation finishes 

Finally, the query federator identifies that there is no pending or on-going transaction that requires access 

to the data slice in the INFINISTORE side, neither there will be any future transactions with a similar need. 

Future transactions will always take a value equal or greater than 2021-02-01, so this data slice that co-

exists, can be now safely dropped from the INFINISTORE, as depicted in Figure 9. 
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Figure 9: Dropping the data slice 
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7 Conclusions 
This document reported the work that has been done in the scope of the task T3.2 “Polyglot Persistence 
over BigData, IoT and Open Data Sources” whose goal is to provide a common and integrated way to access 
data that is stored in a structured, semi-structured on even unstructured fashion over a variety of 
heterogeneous data stores, in a unified manner. 

Towards this direction, firstly a state-of-the-art analysis has been made on the topic of polystore 
management systems. This revealed the fact that there are two major categories of polystore systems: 
loosely-coupled and tightly-coupled ones, each one of those focusing either on the autonomy of the 
external datastores, or on the efficiency of performance when processing data into a common model, using 
massive parallelism processing. Apart from those, nowadays a hybrid approach is widely used and  
combines the benefits from both approaches. It became obvious that the INFINITECH Integrated Polyglot 
component will make use of the mediator/wrapper architectural paradigm, widely used by the majority of 
the examined solutions, while it will need to provide even greater expressivity in order not to ignore the 
unique characteristics of the target databases, as most of the proposed solutions do. 

The result of this analysis is the definition of the INFINITECH Common Query Language. This deliverable 
presents the basic principles of this language, which makes use of SQL language, but additionally gives the 
possibility to write native queries compatible with the target datastores, in a declarative way or via 
scripting expressions. An integrated statement written in the INFINITECH language consists of several 
subqueries that are targeting heterogeneous datastores. The common language abstracts this 
heterogeneity, while also giving the ability to exploit the datastore’s unique characteristics. Moreover, the 
importance of the bind join and the way this is supported by the common language has been presented, 
along with an example on how we can use the latter to access Hadoop data lakes with MFR functions. 

As the basis for the Integrated Polyglot component has been defined, being the INFINITECH Common query 
language, the general architecture design of this component has been presented. The component diagram 
highlighted how polyglot extensions are being designed in order to be incorporated with the INFINITECH 
central data repository, while the way this integration allows for the parallel execution of integrated 
queries across different datastores was widely presented. 

After having the overall design of this component, we progressed with the implementation of a wrapper 
that can be used as the first polyglot extension that access data from an external relational database 
management system. More technical details have been provided in order to give the system developers the 
overview of the design with a class diagram, along with the code snippets to highlight what will need to be 
further implemented for the remaining of the wrappers. This can be used as a guideline for further 
development. 

Finally, and based on the implementation of the polyglot query engine that was described in the previous 
sections, we implemented in this phase of the project what we call real time data warehousing, whose 
purpose is to provide a unified and seamless framework for data analytics over a logical dataset that has 
been physically split between an operational datastore and a data warehouse. 

To conclude, the progress of task T3.2 is in plan with what has initially been planned, as already, the 
analysis of the competition has been fulfilled, the definition of the INFINITECH Query Language has been 
delivered, the design of the overall component has been published, while there is already an 
implementation that can be used as a reference for the development of the remaining of the wrappers. It is 
worth to be mentioned that this is the second report of the work to be done in the scope of T3.2, and there 
will be an additional iteration, where an extensive evaluation of the polyglot query processing framework 
will be provided. 
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