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Executive Summary 
The goal of task T3.4 “Automated Parallelization of Data Streams and Intelligent Data Pipelining” is to firstly 
provide the INFINITECH approach for intelligent data pipelines and secondly, to allow for the automation of 
the deployment of parallelized data streams. Modern applications currently being used by data-driven 
organizations, such as those belonging to the finance and insurance sector, require to process data streams 
along with data persistently stored in a data base. A key requirement for such organizations is that the 
processing must take place in real-time providing real-time results, alerts or notifications in order to 
instantly detect fraud financial transactions the moment they are being occurred, detect possible 
indications for money laundering or provide real-time risk assessment among other needs. Towards this 
direction, streaming processing frameworks have been used during the last decade in order to process 
streaming data coming from various sources, in combination with data persistently stored in a database 
that can be considered as data at-rest. However, processing data at-rest introduces an inherit significant 
latency, as data access involves expensive I/O operations, which are not suitable for streaming processing. 
Due to this, various architectural designs have been proposed and are utilized in the modern landscape that 
deals with such problems. They tend to formulate data pipelines, moving data from different sources to 
other data management systems, in order to allow efficient processing in real-time. However, they are far 
from being considered as intelligent, with each of the proposed approaches comes with their own barriers 
and drawbacks. 

A second key requirement for data-driven organizations in finance and insurance sector is to be able to 
cope with diverse workloads and continuously provide results in real-time even when there is a burst of 
incoming data load from a stream. This might occur in case of having a stream consuming data feeds from 
social media in order to perform a sentiment analysis and an important event or incident takes place, which 
will make the social community response by posting an increased number of tweets or articles. Another 
example is the unexpected currency devaluation that will most likely trigger numerous financial 
transactions caused by people and organizations swapping their portfolio currencies. The problem with the 
current landscape is that modern streaming processing frameworks allow for static deployments of data 
streams that consist of several operators, in order to serve an expected input workload. In case of such 
scenarios, an unexpected burst of the incoming workload might saturate the resources devoted for the 
initial deployment which cannot provide the results in real-time, or even worse, might lead to a crash. 

This document reports on the work that has been done towards those two main objectives at the current 
phase of the project (M30). On one hand, an initial state-of-the-art analysis of the current status of the data 
pipelines and data stream parallelization has been provided, along with the discovered barriers, problems 
and solutions used so far. Then, we provided the current landscape of data pipelining in modern 
enterprises today, analyzing the different architectures used to cope with the inherit challenge of 
combining streaming data with data at-rest, along with each solution’s benefits and drawbacks. We then 
explained how the INFINITECH approach can be used to solve those issues in a holistic manner, utilizing the 
development of the other tasks and the INFINISTORE as its basic pillars. Later on, we went one step 
beyond, making use of the change data capture paradigm for implementing the data pipelines. We 
provided a demonstrator on how we can move data from external operational datastore to INFINITECH in a 
transparent way. Then, we gave focus on the automatic parallelization of the streaming operators, and 
after defining out technical indicators that we need to provide, we implemented the FinFlink library, as the 
enabler of such scenarios. We validated the scalability of our approach and we integrated the work that 
had been previously done and brought as a background technology by the University of Glasgow, and 
further extended it to make use of the FinFlink library and prove automatic compute parallelization 
capabilities. 

In conclusion, in order to cope with the abovementioned requirements and overcome the current barriers 
of the modern landscape, we envision the INFINITECH approach for Intelligent Data Pipelines and the 
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parallelized data stream processing, using Apache Flink as the baseline technology for the INFINITECH 
streaming processing framework along with Kubernetes. In our solution, we provide a holistic approach for 
data pipelines that makes use of the key innovations and technologies provided by INFINITECH and 
implemented in the rest of the tasks of the project related with data management activities. Our solution 
solves all problems related with different types of storage and the usage of different types of databases for 
persistent data storage, allowing efficient query processing, handling aggregates and dealing with 
snapshots of data. Moreover, regarding the automatic parallelization of the operations over data streams, 
we have designed our solution, i.e., the FinFlink library for parallelized data stream processing, allowing the 
deployed operators to save and restore their state and the online reconfiguration of the Flink clusters 
based on the realization engine brought by the Glasgow University, which enables elastic scalability by 
programmatically scaling the clusters. 
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1 Introduction 
Data-driven organizations nowadays are increasingly requiring the combination of streaming data with 
persistently stored data, usually called data in-flight and data at-rest. Streaming processing frameworks 
that have been adopted and widely used during the last decade are being enhanced with additional 
functionalities for solving the inherit barriers that database management systems introduce to an 
integrated solution. The most important obstacles faced are the latency of an analytical query processing 
operation over a persistent data store and that datastores are not designed to support data ingestion at 
very high rates in order to serve an increased data load coming from a stream. Due to this, they tend to use 
a variety of different data management systems, from operational datastores, to data warehouses and data 
lakes. Operational datastores allow users to persistently write data, but are not appropriate to perform 
analytical query processing over bigdata. For this purpose, data is being periodically moved to data 
warehouses that are designed to only allow read operations, using sophisticated indices and data 
structures that can boost the performance of such operations. Data lakes can also be used as a cost 
effective solution to store historical data that does not require frequent processing. Operational datastore 
on the other hand can be further divided to serve different categories: traditional SQL datastores that 
ensures consistency in terms of database transactions, which are critical for applications in the insurance 
and finance sectors. However, they are not designed to scale out, and they are inefficient in performing 
analytics on the same time. For this reason, other types of operational datastores have been adapted 
during the last decade, commonly referred as NoSQL datastores (or their evolutions which are widely 
known as NewSQL), which sacrifices transactional semantics for the sake of scalability. Usually, they can 
scale out more efficiently and can serve ingestions at very high rates. However, they lack rich query 
processing capabilities. As a result, modern enterprises use a variety of different datastores, stream data 
managers and tools, such as Kafka and machine learning infrastructure. This makes the data pipelines more 
complex and problematic, as they need to move data across the different databases, in order to take 
advantage of each one’s benefits. For that, they rely on expensive ETLs (Extract, Transform, Load) and they 
perform periodic batch processing, which is not suitable when there is the need for real-time data analytics. 
Periodic batch processing makes the data used in a processing framework obsolete, as ETLs take place 
periodically, once every day or during weekends. 

In order to overcome these problems, different architecture designs have been proposed and adapted in 
modern enterprises. For instance, lambda architectures have been widely adopted to solve the problems of 
complexity mixing different databases and the need for real-time processing. But they are very complex, 
consisting of different layers with different codebase, while their maintenance is hard to ensure. Other 
architectures rely on moving data from operational to analytical datastores and vice-versa, using 
architectural designs such as current-historical data splitting, data warehouse or operational data 
offloading and database sharding. All of these come with the drawback that query processing takes place 
over a snapshot of the dataset, and the results are thus obsolete. Other approaches aim at improving the 
latency of the execution of an analytical query, which involves aggregations. This is crucial as the response 
time must be very low in order to be used in combination with streaming operators. Detail-aggregate view 
splitting, in-memory application aggregations and federated aggregations are techniques widely used to 
solve these issues, with the drawback of sacrificing the consistency and accuracy of the results. We provide 
details on these designs in section 7 of this report.  

To solve these issues, we propose the INFINITECH approach for Intelligent Data pipelines, which provides a 
holistic solution for data pipelines, solving major problems with different types of storage, handling of 
aggregates and dealing with snapshot databases. Our proposed analytical pipeline will address all of the 
above identified architectural patterns for data pipelining, combining data streaming and data at rest, 
taking advantage of the technologies and innovations developed in INFINITECH that break through the 
current barriers of modern applications in finance and insurance sectors which have been reported so far in 
the corresponding deliverables such as D3.3, D3.18, D3.8, D5.4 and D5.7 that report the work that has been 
carried out in the rest of the tasks related with the data management layer of IFINITECH. We have built our 
solution taking these prototypes as the basic pillars. 
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Another key requirement for modern data-driven organizations using streaming processing frameworks is 
the ability to cope with diverse incoming workloads. So far, current solutions allow only static deployments 
of data stream operators. This is problematic in the sense that in cases of unexpected peaks of incoming 
data coming from a stream, the static deployment cannot scale out to cope with that need. 

In order to help solving the abovementioned issues and according to the various INFINITECH pilots, we 
propose a solution based on Apache Flink as the streaming processing framework of INFINITECH, integrated 
with the INFINISTORE as the data management layer and in combination with Kubernetes as the container-
orchestration framework. By using INFINISTORE, we can cope with the majority of technological challenges 
for data pipelines that require complex architectures that introduce additional barriers. The use of Flink 
allows us to also extend their operators to store and restore their state using checkpoints. Having that, we 
designed and are implementing our FinFlink library that has been designed to provide parallelization of the 
popular operators over data streams usually used in FinTech solutions. We demonstrated the scalability of 
our implementation and by leveraging the outcomes of the H2020 BigDataStack3 project, and its realization 
engine, we extended the latter so that we can now be capable of redeploying a Flink cluster, increasing the 
number of instances of the operators and restoring their relevant state. This allows programmatically 
scaling the Flink clusters and providing dynamic redeployments in order to cope with these diverse 
workloads. 

 

1.1. Objective of the Deliverable 
The objective of this deliverable is to report the work that has been done in the context of the task T3.4 
“Automated Parallelization of Data Streams and Intelligent Data Pipelining”. This task lasted until M30 and 
therefore, this is the third version of this document that has been released, extending and modifying the 
content of the previous versions. In the second version, the main focus was on the intelligent data pipelines 
that INFINITECH needs to provide, and the identification of the problem that needs to be solved took place, 
performing a thoughtful state-of-the-art analysis on problems and solutions of data pipelines and data 
stream parallelization, along with a detailed analysis of their current landscape in modern enterprises of 
today. We identified which different technologies are mostly used in order to combine processing of 
streaming data with data at-rest in a data pipeline, and the dominant architectural designs used so far, in 
order to identify the current drawbacks. We then proposed the INFINITECH approach for data pipelines, 
that will solve those problems in a holistic manner. Moreover, we designed our solution that allows for 
dynamic redeployments of streaming operators. This will allow for a dynamic scaling of those operators, 
which is a current challenge. In this third version, we now focused on the automatic parallelization of the 
data streams, with the implementation of our FinFlink library and the experimentation with a synthetic 
dataset that covers most of the finance use cases of the project and proved the scalability of our solution. 
Finally, we integrated FinFlink with the realization engine of the University of Glasgow that brought to the 
project as its background technology, and further extended it to support the automation of the re-
deployments with respect to the Infinitech way of deployments. 

 

1.2. Insights from other Tasks and Deliverables 
The work that is reported in this deliverable is based on the overview of baseline technologies defined in 
WP2. This task is based on the technologies and innovations implemented under the scope of the tasks of 
the project that are related with the data management layer and make use of those as the basic pillars. As a 
result, this is very closely related to T3.1 “Framework for Seamless Data Management and HTAP”, which 

 
3 https://bigdatastack.eu/ 
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provides the fundamentals that allows the hybrid transactional and analytical processing, allowing for 
query processing over live data added in the operational datastore, removing the need to migrate data to a 
data warehouse. Moreover, T3.1 allows for direct data ingestion at very high rates, which removes this 
barrier from our solution. T3.2 “Polyglot Persistence over BigData, IoT and Open Data Sources” provides the 
polyglot extensions at the level of INFINISTORE query engine that allows for a unified manner to query data 
that are stored in different data sources. T5.3 “Declarative Real-Time Data Analytics” implements the online 
aggregates that will be massively used in our solution, removing the inherit barriers of data consistency 
that various architectural designs suffer when trying to pre-calculate the results of the analytical operations 
in order to boost the performance of such operations. Finally, T3.3 “Integrated Querying of Streaming Data 
and Data at Rest” provides the Apache Flink as the streaming query processing framework of INFINITECH, 
integrated with the data management layer (the INFINISTORE) to allow the combination of streaming 
processing with data at-rest in INFINISTORE. With this integration, we are now capable of taking advantage 
of all these aforementioned technologies into our INFINITECH approach for Intelligent Data Pipelines. Last 
but not least, the INFINITECH Way for deployment, using tailored sandboxes that rely on the Kubernetes, as 
implemented under the scope of WP6 “Tailored Sandboxes and Testbeds for Experimentation and 
Validation” and the provision of the reference testbed, in combination with the use of Apache Flink as the 
baseline technology for streaming processing, allows for the parallelization of the data streams which is the 
second important objective of the task. 

 

1.3. Updates from the previous version (D3.10) 
In this version of the report, we have added sections 2-5 that describe the part of the automatic 
parallelization of data streams, which was missing from the previous version. We also moved the sections 
related with the intelligent data pipelines to sections 6-9, however, their content has not been updated 
since D3.10, as the work had been finalized in the second phase of the task and had been already reported 
in D3.10. 

1.4. Structure 
This document is structured as follows: Section 1 introduces the document, putting the work reported in 
this deliverable under the context of the project, highlighting its relationship with the tasks related with the 
data management activities of the project. Then, the document has 2 main parts. 

The first part is related with the automatic parallelization of data streams. It contains section 2 which 
provides the background on the field of streaming financial data, while it describes the synthetic dataset 
that will be used to validate our implementation. Section 3 proves the details of our proposed FinFlink 
library, while section 4 validates its scalability. Finally section 5 demonstrates how our solution can be 
automated using the realization engine of the University of Glasgow.  

Regarding the second part, it is related with the intelligent data pipelines, and section 6 starts providing an 
extensive state-of-the-art analysis on data stream parallelization, describing the problems and the most 
adapted solutions. Section 7 describes the current landscape of modern applications that make use of the 
data pipelines while section 8 introduces our vision for the INFINITECH approach for Intelligent Data 
Pipelines, after providing an analytical survey of modern architectural designs along with their drawbacks 
and inherit issues, describing how our approach can provide a holistic way to solve all those issues. Section 
9 provides a demonstrator regarding the implementation of an INFINITECH data pipeline that moves 
transparently data from an operational data store to the INFINISTOE.  

Finally, section 10 concludes the document and presents the next steps towards the delivery of our 
prototype. 
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2 Background on Streaming Financial Data   

2.1 The Burstiness Problem 

In the finance domain, there are a wide range of use-cases that require real-time processing of data 
streams to add value. For instance, when performing financial trading for currencies or stocks, it is critical 
to be able to monitor price fluctuations and trading behaviour in real-time to identify effective buy/sell 
opportunities. Moreover, as the application of alternative information streams, such as news articles and 
social media, become more popular, large volumes of specialist compute resources are needed to enable 
real-time language analytics. However, processing financial data can be challenging, since a key feature of 
financial data is that the rate at which it arrives is not 
constant. Over the course of each day the number of 
financial trades and associated trade volume can 
fluctuate wildly, and moreover can experience bursts of 
activity when the market becomes aware of some new 
information. For instance, Figure 1 reports the average 
number of trades made on the London Stock Exchange 
each day for a 6-year period. As we can see, the number 
of trades can change dramatically over time. 
Furthermore, Figure 1 only shows the number of distinct 
trades, fluctuations can be much larger when the trade 

volume is considered (i.e., each trade does not represent 
a single asset changing hands, but many assets). 
Moreover, in today’s trading environments, the severity 
of trade burstiness is exacerbated by automatic trading algorithms that use other bids or observed 
transaction patterns as triggers for their own trades. Indeed, markets that allow high-frequency trading (i.e. 
markets that include automated bots designed to identify small profitable trades and quickly execute them) 
have much higher trading volumes (millions of transactions per day rather than thousands) and are more 
susceptible to such bursts as they have no human oversight. For example, on May 6, 2010, the Dow Jones 
Industrial Average (DJIA) declined by 1,000 points and dropped 10% in just 20 minutes, which was blamed 
on a massive order that triggered a mass automated sell-off. As a result of these factors, to enable 
consistent processing of financial data streams with low latencies the underlying infrastructure needs to be 
elastic to rapid changes in input rate and velocity. 

2.2 Introducing Trading Data 
For the purposes of T3.4, we will be focusing on financial asset trading data, where a financial asset might 
be a stock (e.g., Apple Shares) or currency (e.g., the Euro). This aligns well with a range of pilots in the 
investment and insurance sectors, such as Pilot 2 (Real-time Risk Assessment in Investment Banking) and 
Pilot 6 (Personalized and Intelligent Investment Portfolio Management for Retail Customers) within 
INFINITECH. Financial trading is operated by regulated online markets such as the New York or Shanghai 
Stock Exchanges. These exchanges mediate asset trades between pairs of traders. While these exchanges 
will keep a record of individual exchanges, this is private data and is not made public. Instead, exchanges 
provide aggregate statistics of trade volume for different assets periodically for a cost, e.g., 1 minute or 1-
day intervals.  The format of this data is largely standardized, with the following data fields: 

• Asset ID: An identifier for the asset, e.g. the currency ISO, or stock ticker 

• Date/timestamp: A date and time representing the time period covered 

• Price Data: At minimum the current price, but if provided for a day, may also contain the Market 
Open/Close and High/Low prices for that interval 

Figure 1: London Stock Exchange Average Number of 
Trades Per Day 
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• Volume: The number of the asset that changed hands during the time interval. 

2.3   FAISSS Dataset 
Later in this Deliverable, we will examine the scalability and throughput of financial analytics using 
Infinitech technologies. However, to perform this evaluation, we need a financial dataset that has the 
properties of real financial data streams and allows us to stress those technologies. While there are a range 
of financial datasets already available on data platforms such as Kaggle, these datasets are typically day-
trade datasets, meaning that they only contain a single datapoint per day, and as such are not suitable for 
stress testing. In contrast, exchange data services such as FinnHub (https://finnhub.io/) can provide much 
more granular data points in higher volumes. However, as these services business model is subscription-
based, they do not allow us to curate and publicly release a dataset based on their data. As such, to enable 
our later experiments, we instead generate an extended semi-synthetic dataset based on available public 
financial data that is both high-volume and granular, denoted FAISSS (Financial Asset Intra-day Semi-
Synthetic Streams). 

In particular, we start with a public domain intra-day Stocks and ETF’s dataset for the U.S. stock market: 

• https://www.kaggle.com/borismarjanovic/daily-and-intraday-stock-price-data 

This dataset provides intra-day trading data at the granularity of one data-point per Stock/ETF every 5 
minutes, for 7,189 Stocks and 1,341 ETFs. For a public dataset, this is one of the larger available, with a 
total of 7,840,572 data points. 

Using this dataset as a base, we then generate a synthetic trading history for each Stock and ETF. The idea 
here is that given that a single datapoint in the above dataset represents aggregate trading data for a 5-
minute interval, we can have a computer program ‘guess’ what trades actually happened during that 
interval, given 1) the known constraints in the form of the open, high, low and close prices and the actual 
volume traded during that period; and 2) a set of manually defined heuristics for generating trades. Of 
course, these synthetic trades are just that – synthetic, and do not represent actual trade behaviour within 
those 5-minute windows (although we have tried to make them appear as realistic as possible). However, 
this point is immaterial for the purposes of this deliverable, as we simply want a semi-realistic high-volume 
dataset for the purpose of stress testing the Infinitech technologies.  

To perform this synthetic trade generation process, we implemented an Apache Flink Java package (FAISSS 
Generator), which we provide separately on the Infinitech Marketplace. This package takes as input a 
stream of financial trade data points of the standard format (see Section 2.2), and converts them to a 
stream of SyntheticTrade data points, which contain the following fields: 

• Asset ID: An identifier for the asset, e.g. the currency ISO, or stock ticker. 

• Date/timestamp: The time of the synthetic trade. 

• Volume: The number of the asset that was sold. 

• Price: The price the asset was sold at. 

The properties of the output trades produced by the FAISSS Generator can be configured using two main 
parameters: 

• Target Number of Trades per Interval: For each input data point, how many trades to generate for 
that interval. Note that this is a target for the generator to aim for, it may produce more or less 
than this depending on various randomised elements. 

• Counter Trajectory Trade Probability:  As a base assumption, the FAISSS Generator assumes that if 
an asset gains value over the current period, trades will generally trend towards the low price first, 
followed by the high price, finishing at the close price. Similarly, if an asset loses value over the 
period, then it will trend to the high price first, followed by the low price, followed by the close 
price. However, these transitions will not be strictly linear, i.e. each trade has some probability to 

https://finnhub.io/
https://www.kaggle.com/borismarjanovic/daily-and-intraday-stock-price-data
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‘buck-the-trend’ by moving the price in the opposite direction.  Counter Trajectory Trade 
Probability is a value between 0-1 that specifies the base probability that any trade will move the 
price in the opposite direction. The higher this value the higher the variance in prices generated for 
each trade.  

For the purposes of our later experiments, we generate a new FAISSS dataset where the Target Number of 
Trades per Interval was set to 1,000 and the Counter Trajectory Trade Probability was set to 0.1 (10%).  This 
forms our resultant FAISSS trades dataset that we use later, which contains 6,449,454,459 (6.5 billion) trade 
data points, with around 1 million trades per financial asset. 
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3 FinFlink Library 
As task 3.4 is focused on how to scale and parallelize financial data stream computation efficiently, we need 
a common use-case that we can leverage for evaluation. Most financial analytics and financial machine 
learned models do not process trading data raw, but instead convert that data into a series of more 
meaningful ‘technical indicators’ that capture price movements and trends. As this is a common use-case 
that requires both parallel computation and dynamic scaling, we use this as our use-case going forward in 
this deliverable to test the capabilities of the Infinitech solution. However, while we have a use-case, we 
also need a concrete implementation of these technical indicators that is compatible with the Infinitech 
Way. In this section we detail a new algorithm library ‘FinFlink’, which was developed during the project 
and implements these technical indicators within the Apache Flink distributed processing platform. 

3.1 Technical Indicators 
Before discussing FinFlink itself, we first should discuss the technical indicators that it implements. FinFlink 
implements 13 technical indicators which we summarize below: 

• True range: The average true range (ATR) is a market volatility indicator. The true range indicator is 
taken as the greatest of the following: current high less the current low; the absolute value of the 
current high less the previous close; and the absolute value of the current low less the previous 
close. The ATR is a moving average of the true ranges. Usually, it is computed over 14 days (n=14) 

 

 

• Average directional index: The average directional index (ADX) is a technical analysis indicator used 
by some traders to determine the strength of a trend. The ADX makes use of a positive (+DI) and 
negative (-DI) directional indicator in addition to the trendline. The ADX identifies a strong trend 
when it is over 25 and a weak trend when it is below 20. Crossovers of the -DI and +DI lines can be 
used to generate trade signals. Usually, it is computed over a period of 14 days (n=14) 
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• Moving average convergence divergence: Moving average convergence divergence (MACD) is a 
trend-following momentum indicator that shows the relationship between two moving averages of 
a security’s price. The MACD is calculated by subtracting the 26-period exponential moving average 
(EMA) from the 12-period EMA. 

 

              where α is an smoothing factor (we take here as α=2) and n is the number of days in the period.  

              Then: 

 

• Momentum: Momentum is the rate of acceleration of a security's price. It refers to the inertia of a 
price trend to continue either rising or falling for a particular length of time, usually taking into 
account both price and volume information. Here we calculate momentum as the difference 
between the close prices over 1, 3, 5, 7, 14, 21, and 28 trading days respectively. If we denote by n 
the number of trading days: 

 

• Rate of change: The rate of change (ROC) is the speed at which a variable changes over a specific 
period of time. ROC is often used when speaking about momentum. 

 

• Relative strength index: The relative strength index (RSI) is a momentum indicator that measures 
the magnitude of recent price changes to evaluate overbought or oversold conditions in the price 
of a stock or other asset. The RSI is displayed as an oscillator (a line graph that moves between two 
extremes) and can have a reading from 0 to 100. Here, again, the common period to use is 14 days 
(n = 14). 

 

• Vortex indicator: A vortex indicator (VI) is an indicator composed of two lines - an uptrend line 
(VI+) and a downtrend line (VI-). These lines are typically colored green and red respectively. A 
vortex indicator is used to spot trend reversals and confirm current trends. 
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• Detrended close oscillator: A detrended price oscillator, used in technical analysis, strips out price 
trends in an effort to estimate the length of price cycles from peak to peak or trough to trough. 
Unlike other oscillators, such as the MACD, the DPO is not a momentum indicator. It instead 
highlights peaks and troughs in price, which are used to estimate buy and sell points in line with the 
historical cycle. 

 

• Returns: The returns on investment (ROI) represent the percentage change between close prices 
on different dates, across different periods. 

 

• Volatility: Volatility represents the risk of a stock as expressed by its fluctuations, and is expressed 
as the standard deviation of the logarithmic returns of the stock. In this case, we take the daily 
returns. 

 

Here, N represents the number of periods we consider for measuring the Volatility (here, we take N 
days), and n represents the period of time for computing the ROI (here, we take n=1 day). In the 
right square root, n is the number of periods covered by the ROI calculation. For instance, if we 
took a monthly measure of ROI, we should measure n in months. In this example, as each period is 
equal to a day, we take n=1. 

• Force index: The force index (FI) is a technical indicator that measures the amount of power used 
to move the price of an asset. The force index uses price and volume to determine the amount of 
strength behind a price move. The index is an oscillator, fluctuating between positive and negative 
territory. It is unbounded meaning the index can go up or down indefinitely. It is used for trend and 
breakout confirmation, as well as spotting potential turning points by looking for divergences. 
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• Accumulation/Distribution index: The accumulation/distribution indicator (A/D) is a cumulative 
indicator that uses volume and price to assess whether a stock is being accumulated or distributed. 
The A/D measure seeks to identify divergences between the stock price and the volume flow. This 
provides insight into how strong a trend is. 

 

              where the Money Flow Volume (MFV) is: 

 

              and the Money Flow Multiplier (MFM) is computed as: 

 

• Chaikin oscillator: This estimator measures the difference between the three day and ten day 
exponential moving averages of the accumulation/distribution index. It measures the momentum 
predicted by oscillations around the accumulation-distribution line. 

 

• Min-max: This presents the minimum and maximum close price over a specific period. 

3.2 Temporal Terminology 
The above technical indicators are computed over distinct periods of time given some historical context. To 
understand how these metrics are calculated in FinFlink, we need to first define some terminology to 
represent the different time periods involved. Figure 2 below provides an illustration that we will use to aid 
in defining our terminology: 

 

Figure 2: Technical Indicator Temporal Terminology Illustration 
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Figure 2 visualises a simplified asset price history for three financial assets over an 8-minute period, where 
one trade was made per minute.  The current time for which we are calculating technical indicators is 
00:06. To describe how technical indicators are calculated, we need to define three core concepts, the 
Window, the Compute Period and the Compute Time: 

• Window: The Window represents the maximum amount of historical information that will be used 
when computing the technical indicator, defined as a period of time. In Figure 2, the window is set 
to 5 minutes, meaning the last 5 minutes of price history will be considered during indicator 
calculation. FinFlink maintains a data structure containing all trades per financial asset within this 
sliding window, which is available at technical indicator calculation time. 

• Block Size: If you examine the financial indicators above, many of these indicators compare prices 
for a time period t with earlier time periods (typically t-1, but sometimes earlier). The practical 
application of this is that we need to divide our Window into a number of time periods of equal 
length, with the current period ending at the current time. We refer to the size of these periods as 
the Block Size, which is defined as a period of time and must be equal to or less than the Window. 
For instance, in Figure 2, the Block Size is 3 minutes. The Window is then divided into n distinct 
periods of the provided Block Size, where the most recent is denoted t, preceded by t-1, t-2, etc, 
until the remaining time in the Window is smaller than the Block Size. In the case of Figure 2, only a 
single period is produced, as only a single 3-minute block can fit inside the 5-minute window. 

• Compute Time/Slide: As time progresses, the Window will accumulate new trades as they appear 
in the stream and discard old trades when they exit the window period. However, we also need to 
define when to trigger the computation of the technical indicators, known as the Compute Time(s). 
Typically, we don’t simply want to calculate the technical indicators once, but instead repeatedly 
and frequently re-calculate these indicators over time, such that they always reflect the current 
data about each financial asset. Hence, we define the ‘Slide’, which represents the time difference 
between re-calculation of the technical indicators. In the case of Figure 2, the slide is set to 2 
minutes, meaning that we will refresh the technical indicators every two minutes. 

It is worth noting that it is common for the Block Size and Slide to be set to the same value, however this 
does not need to be the case. 

3.3 FinFlink Architecture 
FinFlink is designed to enable distributed parallelized computation of the different financial indicators. 
Within FinFlink, parallel computation is enabled at two levels, asset level and asset stream level. By default, 
FinFlink will consider each financial asset its own stream and can transparently distribute the ingestion of 
trades for each asset to different task managers within Flink. If collecting multiple sources of trade data for 
a single asset (e.g. when that asset is being traded on multiple markets), then the trades from each source 
can also be accumulated in parallel (although this comes at an additional merging cost).  

Trade data can be streamed in real-time into FinFlink, and the trades for each asset will be accumulated 
into windows within Flink TaskManagers. The state for each window is stored within a Trade Accumulator. 
TaskManager states are periodically check-pointed, and any lost state (due to host failure for example) can 
be regenerated by replaying the data for that TaskManager from the last checkpoint. Internally, we can 
break down the technical indicator generation process within FinFlink into three distinct phases once a 
Compute Time is reached: 

• Trade Accumulator Merging: In most scenarios, we will have only a single trade stream for a 
financial asset. However, in the event that we have multiple streams for an asset and that asset are 
being processed by different TaskManagers, resulting in multiple distributed trade accumulators. In 
this scenario, the trade data from each TaskManager for an asset will be transferred and merged 
into a single (complete) window representation (trade accumulator) before progressing to the next 
stage.  
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• Trade Period Generation: As noted earlier, most technical indicators compare price data across 
different time periods. As such, the second phase is to divide the trade data for the current window 
into these periods based on the defined Block Size. Each period is represented by a Trade Period 
object that holds the trades and calculates useful metadata such as high and low prices. Note that 
the data scientist can define multiple block sizes. By doing so, multiple trade period sets will be 
created. 

• Technical Indicator Calculation: Finally, each trade period set is passed to a Technical Indicator 
Pipeline which defines what technical indicators to compute for that block size, which emit 
Technical Indicators objects containing the resultant features as an output stream. 

 

Figure 3: Technical Indicator Generation Phases 

3.4 Example FinFlink Program 
In Figure 4 we can see a sample program using the FinFlink library to calculate a number of different 
technical indicators, using fixed windows sizes.  
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Figure 4: Example FinFlink Program 
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4 Parallelization and Scalability with FinFlink 
Having now described both the dataset that we use in Section 2.3 and the application that we are scaling 
(FinFlink) in Section 3, we now report on a set of experiments demonstrating the parallelization and 
scalability of this solution. In particular, we ask the question ‘does FinFlink scale close to linearly with 
compute resources and when does this scalability end?’. This is important to establish, since there would be 
no point to automatically orchestrating the scaling of an application (as we will cover in the next section) 
that does not significantly benefit from increased resources being allocated to it. 

4.1 Experimental Setup 
Dataset Preparation: As described earlier, we will be using the FAISSS dataset that we produced and 
described earlier in Section 2.3. As a reminder this is a dataset containing around 6.5 billion stock and ETF 
trades.  This dataset begins on the 25th of January 2012 and ends on the 6th of December 2017. Note 
however that not all stocks have trade data from the entire period the dataset covers, i.e. the first and last 
trade for a stock are not necessarily on the first and last day of the dataset. Figure 5 reports the number of 
stocks that started and ended each month. As we can see, for the vast majority of stocks we only have data 
for a single month: November to December 2017.  

 

Figure 5: Number of Stocks with a first trade and last trade each month in the FAISSS dataset 

Since one of the variables that we need to control for is trade production rate (the number of trades being 
ingested by the system per second), which is a function of the number of currently active trade streams, we 
restrict our stock set to only that final month of trades for which we have the most stocks. In this way, the 
trade production rate becomes primarily dependant4 on the number of these stocks being streamed in 
multiplied by the throughput of the trades producer (discussed next), avoiding issues with varying numbers 
of stocks being ‘active’ over time based on where the data for them starts and ends. Specifically, for these 
experiments we will only be using the stocks portion of this dataset and only include stocks that were 
actively being traded between November 20th and December 4th 2017 (a two week period). This provides, 
6,625 (of the 7,189 total) stocks, for which we have consistent trades over the final month. We consider 
each stock to be a separate stream of trades to be ingested by FinFlink. 

Trades Producer: In a real trading environment, we would connect to one or more financial exchanges or 
data aggregators (like FinnHub) to receive a real-time stream of trades or aggregate trade data. However, 
to make our experiments reproducible and to enable stressing of the FinFlink components we need an 
alternative producer of trades that we can control. To this end we implemented a Trades Producer 
application whose role it is to read the various stock trade files in FAISSS and then emit the trades 
contained into an Apache Kafka topic at a constant rate (where FinFlink will be ingesting the trades from 
that same Kafka topic). This process is illustrated in Figure 6.  

 
4 The trade rate for a stock is not necessarily completely consistent over time, and so the actual number of total trades 

across streamed stocks will still vary somewhat over time.  
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Figure 6: Trade Production Process 

The Trades Producer is a multi-threaded Java application built on the Kafka client’s library. At its core, the 
trades producer has a master thread, referred to as the trade stride controller, and a series of trade group 
producer threads that do the work of emitting trades. The stride controller is responsible for managing the 
passage of time. There are a number of variables that are taken as input by the strides controller: 

• Interval: The time interval between the stride controller moving forward in time. 

• Number of Stocks to Stream: The number of input stocks to stream to Kafka. 

• Number of Stocks per Thread: The number of stocks allocated to each trade group producer 
thread. This number should be high enough that the Trades Producer does not need to constantly 
switch between trade group producers due to limited CPU capacity. 

• Temporal Multiplier: Controls the rate at which time passes at the stride controller. A temporal 
multiplier of 1 means real-time, i.e. if the interval is 3 seconds, then time will move forward 3 
seconds during that interval.  On the other hand, if the interval is 3 seconds, but the temporal 
multiplier is 10, then for every 3 seconds at the stride controller, time moves forward 30 seconds.  

Each trade group producer thread is responsible for a subset of the stocks. At the beginning of each stride 
interval, all trade group producers are notified of the new ‘current time’ or sim time. Each trade group 
producer is then responsible for emitting all trades for their assigned stocks to Kafka before the beginning 
of the next stride interval. 

By controlling the temporal multiplier, we can control the speed at which trades are emitted into Kafka, 
and hence the ingestion rate of FinFlink. For reference, when using all 6,625 streams, with a temporal 
multiplier of 1 (real-time), around 87k trades are emitted per minute, or around 1.5k per second. 

Methodology: To evaluate the scaling of FinFlink, we perform a set of experimental ‘runs’. During each run, 
we begin with a cold-start Flink cluster comprised of a single JobMangager node and n TaskManager nodes 
(that will perform the work). Each TaskManager is provided with 2 compute cores and 32 GB of RAM. We 
then deploy a FinFlink topology upon it. This topology is held constant for these experiments, and 
calculates 7 Technical Indicators across two different temporal windows, referred to as the ‘small’ window 
and ‘medium’ window: 

• Small Window Configuration: 
o Window Size: 2 minutes 
o Block Size: 1 minute 
o Stride: 1 minute 

• Medium Window Configuration: 
o Window Size: 1 hour 
o Block Size: 5 minutes 
o Stride: 10 minutes 



D3.11 – Automatic Parallelization of Data Streams and Intelligent Pipelining - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 23 of 56 

Each TaskManager is allocated 2 task slots, one per core. The FinFlink topology global parallelism is set to 
the number of task slots within the Flink cluster, i.e. n*2. Note however that we force the parallelism of the 
first Flink task within the topology, which reads the trades from Kafka and assigns timestamps/watermarks 
to 1, as is required since we are using Flink ‘Event Time’ (time as defined by the trade timestamps) rather 
than ‘Process Time’ (time defined by the hardware clock).5 A visualisation of this topology as provided by 
the Flink UI for n=3 is shown below in Figure 7. 

 

 

Figure 7: FinFlink Topology Visualization 

Once the topology is deployed, we wait for 10 seconds to give the topology time to reach a ready state and 
then initialize the Trades Producer with the following configuration: 

• Interval: 3 seconds 

• Number of Stocks to Stream: 6,625 

• Number of Stocks per Thread: 50 

We separately experimentally control the temporal multiplier to maintain a trade production rate slightly 
higher than the FinFlink topology can handle, to simulate a full load on the topology. For reference, this 
starts around x50 speed when n=1 (which corresponds to around 72.5k trades per second) for the 
aforementioned topology, although this will vary depending upon the exact technical indicator and window 
configurations chosen. We then let the run continue for 5 minutes and then measure the volume of data 
completely processed by the end of that period. 

Metrics: After 5 minutes have passed, we measure the number of technical indicator data points produced 
by each window. This provides us a view on the average throughput of the system. By comparing how the 
throughput scales with n (parallelism) we can judge how efficient FinFlink is and where diminishing returns 
begin for this topology. 

 

 
5 This is required such that we have consistent generation of watermarks that act as triggers for technical indicator 

calculation based on the synchronized event time. 
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4.2 Experimental Results 
In this section we report the experimental results resulting from our runs. In particular, we performed 6 
runs where parallelism was set to [1,2,4,6,8,10] (for reference the node count n for these are [1,1,2,3,4,5]). 
As we increase the parallelism, we expect the throughput of the system, measured by the number of 
technical indicator data points produced by each window during the 5-minute period to increase. In the 
best case, this should scale close to linearly, i.e. if we double the parallelism, we double the throughput. 
However, for this type of topology, we are unlikely to experience true linear scaling beyond a certain point, 
since technical indicator calculation will eventually form a bottleneck since the maximum degree to which 
that can be scaled is equal to the number of stocks being streamed. Moreover, Flink itself will introduce 
some overheads, as will network transfer costs between physical nodes in the Flink cluster. Hence, we 
expect to observe close-to linear scaling, until either the bottleneck is reached, or the overheads begin to 
eliminate the benefits provided by further increasing parallelism. 

 

Figure 8 reports the throughput of the FinFlink topology (as measured by the number of output technical 
indicator data points for a fixed 5-minute period) for the Small and Medium window calculations as the 
parallelism is increased. The orange line indicates the medium window and the blue line indicates the small 
window. As we can see from Figure 8, for the medium window, the throughput increases close to linearly 
with the platform parallelism and does not reach a saturation point given this level of parallelism. On the 
other hand, for the small window, we observe close to linear scaling up-to parallelism 6, and then no 
further throughput gains are observed (indeed throughput decreases). This can be explained by overheads 
within the Flink topology and the JVM itself. When parallelism is 6, the topology is processing around 340k 
trades every second, or to put it another way, around 3,200 stocks are having indicators calculated for 
them every second. It is around this point that the network starts to become saturated (or rather network 
latencies between the Flink topology nodes start to become noticeable). As a result, simply adding more 
nodes only slows the topology down, as more network IO and Trade Accumulator merging needs to occur.  

 

Figure 8: FinFlink throughput as parallelism increases for the two window calculations. 

 

To conclude, from these experiments, we can see that FinFlink is very efficient, and even for extreme 
frequency updating, we can scale up distribution to around parallelism 6 before network bottlenecks 
become an issue. For windows with larger stride values, this can scale to a much higher level of parallelism.  
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5 Automatic Compute Parallelization with the 
Realization Engine 

In the previous section, we demonstrated how the FinFlink library is a scalable source of financial analytics 
that scales close to linearly with compute capacity provided to it (up to a certain point). However, having 
the capability to scale is not the same as operationalizing that scaling in practice. To do the latter, we 
require a container orchestration platform, which can monitor the observed quality of service of FinFlink (or 
other applications) in production and scales it appropriately based on the input load. To achieve this within 
INFINITECH, we extend an existing platform developed by GLA in the prior H2020 BigDataStack project, 
namely the Realization Engine. In this section we will provide a short introduction and then summarise 
extensions made to it for INFINITECH. 

5.1 What is the Realization Engine? 
At its core, the realization engine is a suite of containerized services that provide configuration, deployment 
and subsequent state-monitoring, as well as manage tooling for applications deployed upon Kubernetes. As 
a container suite, the Realization Engine is divided into a core, along with a set of plugins that add 
functionality (discussed later). The core platform is comprised of three services:  

• Realization Engine API: This is a containerized RESTful service that allows an application developer 
to register new applications, deploy registered applications, and/or issue commands to alter the 
configuration of those applications at run-time. This is the central management service of the suite. 

• Cluster Monitoring: This component acts as a synchronisation layer between the Realization Engine 
and the underlying cluster management system, in our case Kubernetes. Its role is to continuously 
monitor the namespace(s) registered with a user’s application and record any changes in states 
observed (that can be used by other components to trigger actions). 

• Application State DB: As the name suggests, this is a database that stores the user’s application 
configuration, as well as the present and past states of associated Kubernetes objects. 

• Operation Sequence Runner: Unlike the aforementioned components that are persistent, an 
operation sequence runner is a transient container that performs a sequence of operations that 
will result in the deployment or alteration of a user application. Operation Sequence Runners are 
spawned by the Realization Engine API on demand. 

The core idea behind the Realization Engine is that it provides a central place where complex applications 
can be managed holistically. This is different to Kubernetes itself, which is only concerned with the 
management of containers, i.e. the Realization Engine models at the level of an Application, while 
Kubernetes models at the level of a container, pod or other low-level object.  

5.2 Application Modelling 
Figure 9 illustrates the new conceptual application model used by the Realization Engine. In particular, 
under this model, the user account or ‘owner’ owns one or more applications and can also define metrics. 
A single application has a state, zero or more object (templates) representing the different components of 
the application, zero or more operation sequences representing actions that can be performed for the 
application, and a series of events generated about the application. An object template (application 
component) can be instantiated multiple times, producing object instances. Object instances may have an 
associated resource template describing the resources assigned to that object. An object instance contains 
a definition of an underlying Openshift object that contains the deployment information. Operation 
sequences represent actions to perform on the application and contain multiple atomic ‘Operations’. An 
operation targets either an object template or instance, performing either some alteration or deployment 
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action upon it. Service level objectives can be attached to an object instance, which track a metric exported 
by or about that object.  
 

 
Figure 9: Object Model of the Realization Engine 

 

5.3 Operations and Operation Sequences 
Importantly, an operation is a representation of an ‘action’ that can be performed on a Realization Engine 
Object. For example, spawning an instance from an object template is an (Instantiate) operation. Similarly, 
deploying an object instance onto a cluster is an (Apply) operation. The Realization Engine defines a set of 
standard operations that can be performed on any object. It is through these operations that users (or 
programmatic orchestrators) can deploy or alter their applications. The base set of operations that are 
provided out-of-the-box in the Realization Engine are: 

• Instantiate: The instantiate operation is responsible for generating a Realization Engine Object 
instance from a Realization Engine Object template. 

• Set Parameters: The SetParameters operation is a generic operation that enables placeholder 
values within a Realization Engine Object to be replaced with defined parameters. 

• Get Parameter from Object Lookup: This operation performs a query of the underlying Openshift 
cluster objects and sets a parameter within the containing operation sequence based on the 
response. 

• Deploy: Deploy is a simple operation that takes a Realization Engine Object instance and then 
creates the underlying Openshift Object on the cluster using the built-in Openshift operation client 
within the Realization Engine. 

• Execute CMD: The Execute CMD runs a command on one or more of any underlying Pods (and 
associated containers) connected a Realization Engine Object. 

• Build: The Build command enables the triggering of a container build process within Openshift, 
using its source-to-image sub-system. 

• Delete: The delete command enables a user to delete the underlying Openshift objects for one or 
more Realization Engine Object instances. 

• Scale: The Scale operation provides an in-built method for altering the replication factor for 
Realization Engine Object instances of type DeploymentConfig at run-time. 

• Wait: The Wait operation simply inserts a pre-defined wait in seconds before starting the next 
operation. 

• WaitFor: The WaitFor operation enables an operation sequence to pause until a particular 
Realization Engine Object instance reaches a pre-defined state. 
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An operation sequence is simply a definition of a linear sequence of these operations that perform some 
application deployment or alteration task on the cluster. Operation sequences can be registered and then 
subsequently executed on-demand. In this way, an application engineer can pre-define operation 
sequences for creating Flink clusters, deploying topologies like FinFlink, as well as scaling those topologies, 
which can be triggered on-demand. 

In the interest of brevity, we will not detail further the design or implementation of the Realization Engine 
here. However, further information can be found in the associated BigDataStack deliverable that can be 
found here in Section 6: 

• https://bigdatastack.eu/deliverables/d33-%E2%80%93-wp-3-scientific-report-and-prototype-
description-%E2%80%93-y3. 

 

5.4 Additions to the Realization Engine for INFINITECH 
As per the INFINITECH Way, to make the Realization Engine compatible we needed to make a range of 
additions that we discuss below.  

First-Citizen Kubernetes Support: First and foremost, we needed to adapt the internal container object 
support to target Kubernetes, rather than Redhat’s Openshift platform that was used in BigDataStack. This 
involved two main changes to the platform: 

• The addition of a Kubernetes-only authentication layer within the platform core. 

• Updates to the data IO layer to support Kubernetes object types rather than the Openshift 
equivalents (e.g. support for Deployment objects rather than DeploymentConfigs) 

New Operation Sequence Trees: One of the limitations of automation within the Realization Engine was 
the lack of any ability to trigger remedial action if an operation sequence happened to fail for one reason or 
another. For instance, consider the case where we are deploying a Flink cluster for executing a FinFlink 
topology, but the cluster cannot provide the needed resources. In that case the cluster deployment 
operation sequence will fail, and its up to a human operator to decide what to do next. To enable better 
automation for these cases, we added support for operation sequence trees. These can be thought of as 
traditional operation sequences, but they can also define on-fail and on-success triggers, that can be used 
to launch a further operation sequence. By chaining these on-fail and on-success triggers together, 
operation sequence trees become possible, where the application engineer can define automated remedial 
action steps to take upon different eventualities. 

Rule-based Orchestration Logic Engine (ROLE) and the Prometheus Metric Plugin: To enable dynamic 
orchestration of financial applications like FinFlink, we require the ability to automatically trigger operation 
sequences in response to quality of service violations. In BigDataStack this was accomplished by a separate 
service known as the dynamic orchestrator. However, as we do not own the IP for that service, we instead 
implement an equivalent within the Realization Engine itself, referred to as the Rule-based Orchestration 
Logic Engine (ROLE). ROLE, like the other components within the Realization Engine is a containerized 
service, and has two main responsibilities: 1) to detect violations of service level objectives associated to a 
user application; and 2) trigger any associated operation sequences that should be executed in that 
scenario. To support the first piece of functionality, it sources a list of service level objectives from the 
application state DB, and then uses one or more metric plugins to retrieve the metrics defined by those 
service level objectives. To enable the INFINITECH applications, this also required the implementation of a 
new metric plugin: the Prometheus Metric Plugin. This plugin supports the issuance of queries to 
Prometheus time-series metric stores to retrieve metric values. This is used to manage Flink-based 
topologies that can natively report their state to Prometheus time-series metric stores. To fulfil its second 
main responsibility, it simply needs to request that the associated operation sequence be started by the 
realization engine API. 

https://bigdatastack.eu/deliverables/d33-%E2%80%93-wp-3-scientific-report-and-prototype-description-%E2%80%93-y3
https://bigdatastack.eu/deliverables/d33-%E2%80%93-wp-3-scientific-report-and-prototype-description-%E2%80%93-y3
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6 State-of-the-Art Analysis on Data Stream 
Parallelization 

In the first part of this deliverable, chapters 2-3-4-5 presented the work that has been carried out under the 
scope of task T3.4 (“Automated Parallelization of Data Streams and Intelligent Data Pipelining”) with the 
main focus on the automatic parallelization of the data stream operators, using our novel FinFlink library. In 
the following chapters 6-7-8-9, the main focus will be given on the intelligent data pipelines. We will start 
with chapter 6 that provides an overview of the current situation of the state-of-the-art technologies 
regarding the parallelization of the intelligent data pipelines. 

6.1 Introduction  

There is an increasing demand in data-driven organizations to process data streams as opposed to only 
stored data. A data stream is a sequence of tuples with some pre-defined schema. The main difference with 
a database is that a database query processes a snapshot of data at a particular point in time and produces 
the answer, while a streaming query is continuous and produces results continuously. Basically, a stream 
comes from a data source and contains tuples. A data streaming query processes this continuous sequence 
of tuples producing a continuous stream of results. Data streaming has many applications in the financial 
and insurance world such as fraud detection, IoT, stock trading, etc. For this reason, they are becoming 
more and more important in data-driven organizations.  

 

 

Figure 10: Stream Processing Engines Evolution 

 

Data streaming engines started as centralized systems such as NiagaraCQ (J. Chen, 2000) and TelegraphCQ 
(S. Chandrasekaran, 2003), or Aurora (D. Carney, 2002). The main issue with centralized engines is that they 
are limited to the capacity of a single node and they cannot process large stream volumes. For this reason, 
distributed stream processing systems started to be built introducing different kinds of parallelism in the 
query processing. In the next section we elaborate on the different ways to introduce parallelism in query 
processing to enable distributed stream processing. 
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6.2 Query Parallelism & Data Partitioning 
There are two broad approaches to introducing parallelism in query processing (Valduriez, 2020):  

1. Inter-query parallelism. This parallelism basically enables to run different queries in parallel. 
Although useful if there are many queries, a not very common case in data streaming, it doesn’t 
help to process large volume streams, that is, streams with a high rate of tuples. 
 

2. Intra-query parallelism. This parallelism actually enables to accelerate even a single query. It 
basically consists in parallelism the processing within the query. There are two mechanisms that 
can be used: 
 

a. Inter-operator parallelism. This parallelism lies in having multiple operators within the 
query plan to run in parallel and process tuples at the same time. It can be helpful if there 
are many operators, that again, it is not the common case in data streaming systems. 
 

b. Intra-operator parallelism. This type of parallelism parallelizes the processing of a single 
operator within the query plan, enabling multiple threads/processes to process different 
subsets of the incoming data streaming to the operator. 

Centralized approaches already provide inter-query parallelism. One can run multiple queries on the same 
stream engine, and one could scale a little bit by using multiple centralized engines, one for each different 
query. Intra-query parallelism came with distributed data streaming frameworks. Some of the pioneering 
ones are Borealis (Daniel J. Abadi, 2005) and StreamCloud (V. Gulisano, 2010). Distributed data streaming 
systems introduced intra-query parallelism. Borealis introduced inter-query parallelism via inter-operator 
parallelism. While StreamCloud introduced intra-operator parallelism, thus enabling scale out to large 
volume data streams. This intra-operator parallelism pioneered by StreamCloud has become the standard 
in modern data streaming systems such as Flink (P. Carbone, 2015) (originally called stratosphere (A. 
Alexandrov, 2014)) and Spark streaming (Matei Zaharia, 2013). StreamCloud was the main outcome of the 
Stream FP7 project and has become one of the main references in distributed data streaming. It was also 
the first data streaming system to implement elasticity (V. Gulisano R. J.-M., 2012). This evolution of data 
streaming engines is depicted in Figure 10 

 

6.3 Data Partitioning 
Another aspect related to the query parallelism and needed to make such systems work is data 
partitioning. Once there is intra-operator parallelism, the question is how to partition the data across the 
different instances of a given operator. There are two big approaches for partitioning the data: vertical and 
horizontal. Vertical partitioning lies in splitting the data as different subsets of columns. However, data 
streaming queries are not very amenable for vertical partitioning in general. Horizontal partitioning splits 
data as disjoint sets of full rows/events. Horizontal partitioning can be further classified into range, hash 
partitioning, and round-robin. Range partitioning relies on each partition being a range of the distribution 
key. With hash partitioning the distribution key is hashed and the modulus is obtained dividing by a number 
of buckets. The result is a bucket number that is used as the distribution unit. In round-robin events are 
sent in a round-robin fashion to the parallel operators.  

 

However, it should be noted that data partitioning depends on which category of operator is being applied. 
There are stateless and stateful operators. Stateless operators perform their function independently of any 
previous input. An example of stateless operators is a filter. Stateful operators on the other hand perform a 
computation over several rows/events. An example would be an aggregation.  
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Range partitioning has the disadvantage that it requires tuning to guarantee a good load balancing across 
parallel instances of the operator. Hashing on the other hand provides good load balancing by default, 
although it has an extra processing cost to compute the hash over the distribution key. Round-robin 
partitioning only works for stateless operators. If the partitioning is not done right, the parallelism does not 
improve the performance, simply wasting hardware. 

 

6.4 Genuine Stream Processing vs. Batch Processing 
Another dimension in the comparison of streaming engines is whether they are genuine stream processing 
engines or they process batches. Genuine stream processing engines, such as StreamCloud or Flink, process 
events as they are produced yielding real-time processing. However, batch-based engines such as Spark 
streaming have some delay in the processing of events (e.g., a few seconds), since they aim to buffer a set 
of events before processing begins. Processing in batches can be advantageous for more efficient 
processing. However, it introduces a delay of seconds that can be detrimental for event-oriented 
applications. 

 

6.5 Fault Tolerance and Message Processing Coherence 
Guarantees 

Another aspect of distributed stream engines is whether they provide a mechanism to attain high 
availability in the advent of failures or not, and in an affirmative case what are the message processing 
coherence guarantees.  

 

There are different fault tolerance techniques that can be used in data streaming to provide high 
availability of different degrees: 

Active Replication: 

It lies on having each operator instance running on two or more nodes and then all instances will 
receive the same data and produce the same output. This requires sending data from a replicated 
operator to another replicated operator and guarantee 1-copy semantics, that is, guaranteeing that 
the replicated data streaming engine has the same functional behaviour as the non-replicated one. 

 

Checkpointing: 

Under a checkpointing approach, the state of stream processing pipeline components are 
periodically saved to a persistent storage medium. During operation, the stream processing 
platform tracks what parts of the stream have finished processing. If a failure occurs, then the 
pipeline (either as a whole or as only a subset of failed components) is rolled-back to the last 
checkpoint and processing continues from the start of that checkpoint. 
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6.6 Distributed Data Streaming Engine Components 
The architecture of distributed data streaming engines shares some similarities from a functional point of 
view. They have, in general, the following layers: 

1. Data ingestion layer.  

This layer is specialized to capture data from different data sources. These data sources can be 
monitoring probes or logs, information systems, IoT devices, etc. Basically, the different system 
specializes in being able to capture this data with minimal effort providing ways to automatically 
extract the data from the sources or supporting a data format that the data sources use such as 
text, JSON, binary, etc. They can also use a generic mechanism to connect to the data sources such 
as sockets or REST interfaces. 

 

2. Data processing layer. 
 
This layer is in charge of actually processing the continuous queries. One of the most common ways 
is that the data processing layer is represented as a set of containers where one can deploy one or 
more data streaming operators. Data streaming operators are typically algebraic operators able to 
do basic functions such as filtering with a predicate, doing a vertical projection (i.e., selecting a 
subset of the columns), doing an aggregation (e.g., the sum of some column), or even joining two 
data streams (e.g., join together tuples with the same key). 
 
 

3. Storage layer.  
 
Although data streaming engines are typically managing in memory data, many of them provide 
interfaces to storage of different kinds. It can be from file systems such as HDFS, to key-value data 
stores such as HBase or Cassandra or even full-fledged relational SQL databases such as PosgreSQL. 
 
 

4. Output layer 
 
The output layer provides the interface to send the output of the continuous streaming queries 
running on the streaming engine. The output can be dashboards, visualization tools, a file, or even 
a socket to connect to an arbitrary application. 
 

5. Management layer 
 
This is the layer handling the deployment and decommissioning of queries, fault-tolerance, etc. It 
orchestrates the different nodes used for the distributed data streaming engine to process a set of 
continuous data streaming queries and connect them to the data sources and produce the output 
data to the data sinks. 
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6.7 Distributed Data Streaming Engine Categories 
Distributed data streaming engines have undergone specialization and the following different categories 
can be identified:  

 
1. General purpose data streaming frameworks.  

 
They aim at providing a framework where continuous data streaming queries can be deployed 
and processed at different scales. They allow to express queries either as an acyclic directed 
graph of algebraic operators or in a query language. Early data streaming engines, such as 
Borealis and StreamCloud, basically they allow to process queries, while modern frameworks 
such as Flink and Spark Streaming they provide other functionalities needed by enterprises. For 
instance, Spark Streaming is integrated with Spark for doing machine learning. 
 

2. Complex Event Processing (CEP).  
 
They provide support to write business rules to deal with the identification of particular events 
from continuous streams of information, such as a threat situation in security, when to buy or 
sell stocks in stock trading, etc. These rules enable to detect event patterns, abstract events or 
event-driven processes, model event hierarchies, detecting event relationships (causality, 
membership, timing), and do similar processing as with data streaming systems such as 
filtering, aggregation, and transformation. Examples of CEP systems are Esper (Espertech, s.f.) 
and StreamBase (Tibco, s.f.). 
 

3. Online machine learning systems. 
 
These systems apply machine learning over data streams to provide a continuous learning over 
the data stream. This is interesting when one cannot train over a full dataset or new patterns 
can appear over time. One sample system in this category is SAMOA (Scalable Advanced 
Massive Online Analysis) (Gianmarco De Francisci Morales, 2015). SAMOA actually can work 
over different data streaming engines such as Storm (http://storm.apache.org/, s.f.), S4 
(http://incubator.apache.org/s4, s.f.), and Samza ( http://samza.incubator.apache.org, s.f.). 
 

4. Streaming graph analytics. 
 
They basically keep a graph in memory updated by means of streaming actions and provide 
real-time processing over the graph such as recommendations, etc. The examples on this area 
mainly come from Twitter such as GraphJet (A. Sharma, 2016). 

 

6.8 Window Programming Models 
Data streaming engines work on the idea of an infinite stream of events. It is equivalent to a regular 
database table with infinite rows. The processing is made in chunks. Actually, a sliding window over this 
stream of events. Windows can be defined based on time or number of events. The nature of the window 
sliding can be different and basically, there are three main window programming models: 

 

1. Fixed or tumbling windows. 
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These windows split time in consecutive intervals. Events are considered in the interval their timestamp 
belongs.  
 

2. Sliding windows. 
 
Sliding windows are more generic. They support overlapping windows. They are defined by two 
parameters: length of the window and slide. The length indicates how long is the interval. The slide 
how much is shifted the window during each step. If the length is 10 and the shift 5, there will be 
windows from 1 to 10, 5 to 15, 11 to 20, etc. If the shift is equal to the length, then they behave like 
fixed windows. 
 

3. Session windows. 
 
Sessions are defined by certain thresholds, typically certain time of inactivity. They are used for user-
oriented input in which users are active and then after they are inactive for some time the session is 
considered to be finished. When activity restarts it starts in a new session. 
 
 

6.9 Data Source Interaction Models 
There are basically two modes of interaction with data sources: push and pull. In the push mode, the data 
source sends data through an API as soon as it has new data. In the pull mode, there is an agent at the data 
source side that periodically checks whether there is data available and sends it when new data is found. 
The push mode gives the best response times because data is sent as soon as it is available. Also the pull 
mode has the shortcoming that the frequency of pulling has to be higher than the frequency of data 
generation, since otherwise it leads to data loss. 
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7 The Landscape of Data Pipelining at Enterprises 
Today 

In the current data management landscape, there are clearly two big families of data management: 
streaming data and data at rest. The latter is the most extended, however, the former is gaining traction to 
solve problems not amenable for the latter. There are some key differences between data streaming and 
persistent data stores. The first difference is the fact that data streaming queries are continuous and work 
over sliding windows, while persistent databases perform point-in-time queries executed just once over 
stored data. The second difference is that data streaming engines rely on in memory state that allow them 
to process efficiently large volumes of streaming data while persistent databases have to access persisted 
data that is far more costly and is what makes them slower and not being able to process the same volume 
of streaming data per node. 

 

However, each family has a number of possibilities, especially the one related to persistent databases. Let 
us first have a look at this landscape to better understand how INFINITECH can help in the problem of data 
pipelining.  

 

Persistent databases can be classified first into: 

1. Operational databases.  
 
These databases store data in persistent media. They allow to update the data while the data is 
being read. The consistency guarantees that are given with concurrent reads and writes vary. 
Operational databases, because they can be used for mission critical applications, might provide 
capabilities for attaining high availability that tolerates node failures and in some cases they can 
even tolerate data centre disasters leading to the whole loss or lack of availability of a whole data 
centre. The source of these disasters can be from a natural disaster like a flood, a fire, the loss of 
electric power, the loss of Internet connectivity, a Distributed Denial of Service attack resulting in 
the loss of CPU power and/or network bandwidth, or the saturation of some critical resource like 
DNS, etc. 
 

2. Data warehouses. 
 
Data warehouses are informational databases. They are designed only to query data after ingesting 
it. They do not allow modifications, simply loading the data, and after the loading is complete, 
querying the data. They specialize on speeding up the queries by means of OLAP (On Line Analytical 
Processing) capabilities. OLAP capabilities are attained by introducing intra-query parallelism 
typically in the form of intra-operator parallelism. They typically use a customised storage model to 
accelerate the analytical queries by using a columnar model or they use an in-memory architecture. 
 

3. Data lakes. 
 
They are used as scalable cheap storage, to keep historical data at affordable prices. The motivation 
of keeping this historical data might be legal requirements of data retention but more recently the 
motivation is from the business side to have enough data to be able to train machine learning 
models in a more effective way by reaching a critical mass of data in terms of time, but also in 
terms of detail. Some organizations use data lakes as cheap data warehouses when the queries are 
not especially demanding in terms of efficiency. A data lake might require more than an order of 
magnitude higher resources for an analytical query with a target response time than a data 
warehouse, while the price follows an inverse relationship. 
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Operational databases can themselves be classified in three broad categories: 

 

1. Traditional SQL databases.  
 
Traditional SQL operational databases are characterized by two facts. The first one is that they 
provide SQL as query language. The second one is that they provide the so-called ACID guarantees 
over the data. We discuss later these ACID properties in detail. The main limitations of traditional 
SQL databases is their scalability, typically they either don’t scale out or scale out logarithmically 
that means that their cost grows exponentially with the scale of the workload to be processed. 
They typically provide mechanisms for high availability that guarantee the ACID properties what is 
technically known as 1-copy consistency guarantees. The second limitation that they have is that 
they ingest data very inefficiently so they are not able to insert or update data at high rates. Their 
lack of linear scalability also results in exponential growth of cost. 
 

2. No-SQL databases 
 
No-SQL databases is a category with several different kinds of databases that are characterized by 
addressing requirements not well-addressed by traditional SQL databases. There are four main 
kinds of No-SQL databases as we will see later. Basically, they address the lack of flexibility of the 
relational schema that is very rigid and forces to know in advance all the fields of each row in the 
database and they are very disruptive when this schema has to be changed, typically resulting in 
having the database or at least the involved tables not available during the schema change. No-SQL 
databases fail to provide ACID consistency guarantees. On the other hand, most of them they are 
able to scale out, although not all kinds have this ability. Some of them are able to scale out but not 
linearly or not to large numbers of nodes. 
 

3. NewSQL databases 
 
NewSQL databases appear as a new approach to address the requirements of SQL databases but 
trying to remove part or all of their limitations. The direction of NewSQL databases lie in bringing 
new capabilities to old traditional SQL databases by leveraging approaches from NoSQL and/or new 
data warehouse technologies. Some try to improve the scalability of storage. That is normally 
achieved by relying on some NoSQL technology or adopting an approach similar to some NoSQL 
technology. Scaling queries was an already solved problem. However, scaling inserts and updates 
had two problems. The first one is the inefficiency of ingesting data. The second one is that inability 
to scale out to large scale the ACID properties, that is, transactional management. Others have 
tried to overcome the lack of scalability of the ingestion while others the lack of scalability of 
transactional management. 
 

NoSQL databases have different flavours and typically are divided into four categories: 

 

1. Key-value data stores.  
 
They are schema-less and allow any value associated to a key. In most cases they attain linear 
scalability. Basically, each instance processes a fraction of the load. Since operations are based on 
an individual key-value pair, the scalability does not pose any challenge and most of the times is 
achieved. The schema-less approach provides a lot of flexibility. Basically, each row can have a 
totally different schema. Obviously, that is not how they are used. But they allow users to evolve 
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the schema without any major disruption. Of course, the queries have to do the extra work of being 
able to understand rows with different schema versions, but since normally, the schema are 
additive, they add new columns or new variants, it is easy to handle. Key-value data stores excel at 
ingesting data very efficiently. Due to the fact that they are schema-less they can just store the 
data. This is very inefficient for querying, and normally they provide very little capabilities for 
querying such as getting the value associated to a key. In most cases they are based on hashing so 
they are unable to perform basic range scans. Example of key-value data stores are Cassandra and 
DynamoDB. 
 

2. Document oriented databases 
 
They support semi-structured data normally written in a language such as JSON or XML. Their main 
capability is that being able to store data in one of these languages efficiently and being able to 
perform queries for these data in an effective way. Representing these data in SQL is just a 
nightmare and doing queries of this relational schema even a worse nightmare. That is why they 
have succeeded. Some of them scale out in a limited way and not linearly, whilst some others do 
better and scale out linearly. The main shortcoming is that they do not support the ACID properties 
and that they are inefficient querying data that is structured in nature. Structured data can be 
queried one to two orders of magnitude more efficiently with SQL databases. Examples in this 
category are MongoDB and Couchbase. 

 

3. Graph databases 
 
They specialize in storing and querying graph data. Graph data represented in a relational format 
becomes very expensive to query. The reason is that to traverse a path from a given vertex in the 
graph, one has to perform many queries, one per edge stemming from the vertex and as many 
times as the longest path sought in the graph. These result in too many client-server invocations. If 
the graph does not fit into memory, then it is even a bigger disaster since disk accesses will be 
involved for most of the queries. Also, the queries cannot be programmed in SQL and have to be 
performed programmatically. Graph databases on the other hand, have a query language in which 
a single invocation solves the problem. Data is stored to maximize locality of a vertex with 
contiguous vertexes. However, graph databases when they don’t fit in a single node, then they start 
suffering from the same problem when they become distributed losing their efficiency and having a 
performance gain that is lost very soon with the system size in number of nodes. At some point a 
relational schema solution becomes more efficient than the graph solution for a large number of 
nodes. A widely used graph database is Neo4J. 
 
 

4. Wide column data stores 
 
These data stores have more capabilities than key-value data stores. They typically perform range 
partitioning thus, supporting range queries. In fact, they might support some limited basic filtering. 
They are still schemaless. They also support vertical partitioning that can be convenient when the 
number of columns is very high. They have some notion of schema but still they are quite flexible in 
it. Example of this kind of data stores are BigTable and HBase. 

In addition to the above categories, we have stream data managers already explored in the previous 
section and systems like Kafka that are streaming data managers but are persistent, and machine learning 
infrastructure such as Map Reduce, Spark and Pandas. Large organizations such as the ones in the Finance 
and Insurance verticals, typically have databases of many of the above kinds, with many instances of each 
category using the same brand or even different brands.  
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The main issue is that for analytical pipelines they have to move data across databases, many times having 
to adapt, modify or enrich the data. For this, ETL (Extract Transform Load) tools are used to perform batch 
processing and moving data from one database into another transforming the data as necessary. More 
recently a different approach such as ELT (Extract Load Transform) has been used. However, batch 
processing is not always feasible and it is required to acquire the data in real-time or near real-time when it 
is updated. For this purpose, CDC (Change Data Capture) infrastructure has been created that enables users 
to get the changes from an operational database and then do something with these changes like storing it 
in some other database or do some processing like triggering events. In this context, we envision to take 
benefit from the CDC infrastructure in order to create the Intelligent Data Pipeline that INFINITECH needs 
to provide.  
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8 Intelligent Data Pipeline: The INFINITECH Approach 
In INFINITECH, we are looking at how to simplify these data pipelines and adopt a uniform simple approach 
for them. Data pipelines get complicated mainly due to the mismatch of capabilities across the different 
kinds of systems. Many times data pipelines get very complex because of real-time requirements. One 
solution is the adaptation of an architecture, which is well known as lambda architecture.  

 

 

The lambda architecture combines techniques from batch processing with data streaming to be able to 
process data in a real-time manner. The lambda architecture is motivated by the lack of scalability of 
operational SQL databases. The architecture consists of three layers: 

1. Batch layer.  
 
It is based on append only storage, typically a data lake, such as HDFS. Then, it relies on map-
reduce for processing new batches of data in the forms of files. This batch layer provides a view 
in a read-only database. Depending on the problem being solved, the output might need to 
fully re-compute all the data to be accurate. After each iteration, a new view of the current 
data is provided. This approach is quite inefficient but it is solving a scalability problem that 
when it was invented did not have a good solution, the processing of tweets in Twitter. 
 

2. Speed layer. 
 
This layer is based on data streaming. In the original system at twitter it was accomplished by 
the Storm data streaming engine. It basically processes new data to complement the batch 
view with the most recent data. This layer does not aim for accuracy, which is usually very 
crucial for applications in the insurance and finance sector, but it provides more recent data to 
the global view achieved with the architecture.  
 

3. Serving layer. 
 

Figure 11: A typical lambda architecture 
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The serving layer processes the queries over the views provided by both the batch and speed 
layer. Batch views are indexed to be able to answer queries with low response times and 
combines them with the real-time view to provide the answer to the query combining both 
real-time data and historical data. This layer typically uses some key-value data store to 
implement the indexes over the batch views. 

The main shortcoming of the lambda architectures is its complexity and the need to have totally different 
code bases for each layer that have to be coordinated to be fully in sync. Maintenance of the platform is 
very hard since debugging implies understanding the different layers with totally different natures, involved 
technologies and approaches. 

 

Other more traditional architectures are based on combining an operational database with a data 
warehouse. The operational database deals with more recent data while the data warehouse deals with 
historical data. In this architecture, queries can only see either the recent data or historical data, but not a 
combination of both as it was done in the lambda architecture. In this architecture there is a periodic 
process that copies data from the operational database into the data warehouse. This periodic process has 
to be performed very carefully since it can hamper the quality of service of the operational database. This 
periodic process is most of the time achieved by ETL tools. Many times this process is performed over the 
weekends in businesses where their main workload comes during weekdays. Another problem that this 
architecture exhibits is the fact that the data warehouse typically cannot be queried while it is being 
loaded, at least the tables that are being loaded. This forces to split the time of the data warehouse into 
loading and processing. When the loading process is daily, finally the day is split into loading and 
processing. The processing time consumes a fraction of hours of the day that depends on the analytical 
queries that have to be answered daily. It leaves a window of time for loading data that is the remaining 
hours of the day. At some point data warehouses cannot ingest more data because the loading window is 
exhausted. We name this architecture current-historical data splitting.  

 

Due to the saturation of the data warehouse (a common problem), another architectural pattern has been 
devised to deal with this issue in an architectural pattern that we name data warehouse offloading. This 
pattern relies on creating small views of the data contained by the data warehouse and storing them on 
independent databases, typically called data marts. Depending on the size of the data and the complexity 
of the queries data marts can be handled by operational SQL databases or they might need a data manager 
with OLAP capabilities that might be another data warehouse or a data lake plus an OLAP engine that works 
over data lakes. 

 

In some other cases, the problem lies in the fact that the operational database cannot handle the whole 
workload due to its lack of scalability and part of this workload can be performed without being real-time. 
In these cases, a copy of the database or the relevant part of the data of the database is copied into 
another operational database during the time that the operator is not being used, normally, weekends or 
nights, depending on how long the copy of the database takes. If it takes less than the night time, it is 
performed daily. If it takes more than that time, it is performed over the weekend. If it takes more than 
then the weekend, it cannot be done with this architectural pattern. We call this architectural pattern 
database snapshotting.  

 

In other cases, there are real-time or quasi real-time requirements and the database snapshotting does not 
solve the problem. In this case, a CDC (Change Data Capture) system is used that captures changes in the 
operational data and inject them into another operational database. The CDC is only applied over the 
fraction of the data that will be processed by the other operational database. The workload is not 
performed over the operational database due to technical or financial reasons. The technical reason is that 



D3.11 – Automatic Parallelization of Data Streams and Intelligent Pipelining - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 40 of 56 

the operational database cannot handle the full workload and some processes need to be offloaded to 
another database. The financial reason is that the operational database can handle the workload but the 
price is too high. The latter typically happens with the mainframe. We name this architecture operational 
database offloading.  

 

A very typical and important workload that lies in having to ingest high volumes of detailed data and 
compute recurrent aggregate analytical queries over this detailed data. This workload has been addressed 
with more specific architectures. One of such architectures uses an operational database for ingesting the 
detailed data, and uses another operational database to store aggregated views of the data. These 
aggregated views are generated periodically by means of an ETL process that traverses the data from the 
previous period in the detailed operational database, computes the aggregations and stores them in the 
aggregate operational database. The recurrent queries are processed over the aggregation database. Since 
the database contains already the pre-computed aggregates the queries are light enough to be computed 
at an operational database. We call this architecture detail-aggregate view splitting. One of the main 
shortcomings of this architecture is the fact that the aggregate queries have an obsolete view of the data 
since they miss the data from the last period. Typical period lengths go from 15 minutes to hours or a full 
day. Some times this architecture is solved.  

 

The kind of operational databases typically used for the above architecture are SQL operational databases 
and since they do not scale, they require to use an additional architectural pattern that we call database 
sharding. Sharding lies in overcoming the lack of scalability or linear scalability of an operational database 
by storing fractions of the data on different database independent servers. Thus, each database server 
handles a workload small enough, and by aggregating the power of many different database manager 
instances the system can scale. The main shortcomings of this architecture lie in that now queries cannot 
be performed over the logical database, since each database manager instance only knows about the 
fraction of data it is storing and cannot query any other data. Another major shortcoming lies in that there 
are no transactions across database instances meaning that is stored data across different instances are 
related, they don’t have consistency guarantees neither in the advent of concurrent reads and writes or in 
the advent of failures. 

 

Other systems tackle the previous problem of recurrent aggregate queries by computing the aggregates on 
the application side using the memory. So basically, this in-memory aggregates are computed and being 
maintained as time progresses. The recurrent aggregation queries are solved by reading this in-memory 
aggregations, while access to the detail data are solved by reading from the operational database, many 
times using sharding. We name this architectural pattern in-memory application aggregations. 

 

Another approach to deal with recurrent aggregate queries at scale lies in what we call federated 
aggregations. The architectural pattern lies in using sharding to store fractions of the detail data and then 
use a federator at application level that basically queries the individual sharded database managers getting 
the resultsets of the individual aggregate queries and then, aggregate them manually to compute the 
aggregate query over the logical database. This architectural pattern is applied frequently for monitoring 
systems and it is called in that context Monitor of Monitors (MoM). 

 

In INFINITECH, we envision a holistic solution to the issue of data pipelining that works with all kinds of 
storage, handling efficiently aggregates, and addresses the need for temporal storages to deal with 
snapshot databases. This holistic solution aims at minimizing the number of storage systems needed to 
develop an analytical pipeline and addressing all of the above identified architectural patterns for data 
pipelining. It also aims at unifying the data pipelines combining data streaming and data at rest. 
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In what follows we provide the list of targeted architectural patterns for data pipelining and how they will 
be automated and solved with INFINITECH’s innovations in the data management layer, which are 
incorporated into the INFINISTORE data store 

 

1. Lambda architecture. 
 
In INFINITECH, the lambda architecture is totally trivialized by removing at least three data 
management technologies and three different code bases with ad hoc code for each of the queries 
and just having a single database manager with declarative queries in SQL. The lambda architecture 
is simply substituted by the INFINISTORE, which relies on the LeanXcale database. LeanXcale scales 
out linearly its operational storage solving one of the key shortcomings of operational databases 
that motivate the lambda architecture. The second obstacle from operational databases was its 
inefficiency in ingesting data that makes them too expensive even for data ingestions they can 
manage. As the database grows, the cache is rendered ineffective, and each insert requires to read 
a leaf node that requires first to evict a node from the cache and write to disk. This means that 
every write requires two IOs. LeanXcale solves this issue by providing the efficiency of key-value 
data stores in ingesting data thanks to the blending of SQL and NoSQL capabilities due to the use of 
a new variant of LSM trees. With this approach, updates and inserts are cached in an in-memory 
search tree and periodically propagated all together to the persisted B+ tree. Thanks to this 
approach the locality of updates and inserts on each leaf of the B+ tree is greatly increased 
amortizing the cost of each IO among many rows. The third issue solved by INFINISTORE that is not 
solved by the lambda architecture, is the ease to query. The lambda architecture requires 
developing programmatically each query with three different code passes for each of the three 
layers. Using the INFINITECH data management layer and its INFINISTORE, queries are written in 
simple and widely known SQL. SQL queries are automatically optimized unlike the programmatic 
queries in the lambda architecture that require manual optimization across three different code 
basis for each of the layers. The fourth issue that is solved is the one of the cost of recurrent 
aggregation queries. In the lambda architecture, this issue is typically solved in the speed layer 
using data streaming. In INFINISTORE, with the development and adaption of the online 
aggregates, we enable real-time aggregation without the problems of operational databases and 
providing a low cost solution with low response time. 
 
 

2. Current-Historical Data Splitting. 
 
In this approach, data is split between an operational database and a data warehouse or a data 
lake. The current data is kept on the operational database and historic data in the data warehouse 
or data lake. However, queries across all the data are not supported with this architectural pattern. 
In INFINITECH a new pattern will be used to solve this problem named Real-Time Data 
warehousing. This pattern will be solved by a new innovation that will be introduced in LeanXcale, 
namely, the ability to split analytical queries over LeanXcale and an external data warehouse. 
Basically, it will copy older fragments of data into the data warehouse periodically. LeanXcale will 
keep the recent data and some of the more recent historical data. The data warehouse will keep 
only historical data. Queries over recent data will be solved by LeanXcale, and queries over 
historical data will be solved by the data warehouse. Queries across both kinds of data will be 
solved in the following way. If they do not contain joins, basically the query will be executed with a 
predicate over time on both databases guaranteeing a split without overlapping and without 
missing any data item and the union of both results will be returned as the result of the query. If 
the query contains joins then it will be split into four subqueries. One subquery doing the joins 
across recent data that will be pushed down to LeanXcale. One subquery doing joins across 
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historical data that will be pushed down to the data warehouse. And a third subquery doing joins 
across recent and historical data that will be solved at LeanXcale that will used the data warehouse 
as external data source for reading the data. In this way, the bulk of the historical data query is 
performed by the data warehouse, while the rest of the query is performed by LeanXcale. This 
approach enables users to deliver real-time queries over both recent and historical data giving a 
360 degree view of the data. 
 

3. Data warehouse offloading. 
 
In data warehouse offloading due to the saturation of the data warehouse data marts are used 
using other database managers and making a more complex architecture that requires multiple 
ETLs and copies of the data. Within INFINITECH this issue can be solved in two ways: One way is by 
using operational database offloading to INFINISTORE with the dataset of the data mart. The 
advantage of this approach with respect to data warehouse offloading is that the data mart 
contains data that is real-time, instead of obsolete data copied via a periodic ETL. The second way is 
to use database snapshotting taking advantage of the fast speed and high efficiency of loading of 
LeanXcale. In this way, a data mart can be created periodically with the same or higher freshness 
than a data mart would have. The advantage is that the copy would come directly from the 
operational database instead of coming from the data warehouse thus resulting in fresher data. 
 
 

4.  Database snapshotting. 
 
In INFINITECH, database snapshotting can be avoided by using its data management layer as the 
operational database. This can be done thanks to the linear scalability of the INFINISTORE that does 
not require offloading part of the workload to other databases. However, in many cases, 
organizations are not ready to migrate their operational database because of the large amount of 
code relying on specific features of the underlying database. This is the case with mainframes with 
large Cobol programs and batch programs in JCL. In that case, INFINITECH by relying on LeanXcale 
can provide a more effective snapshotting or even can substitute snapshotting by operational 
database offloading that provides full real-time data. In the case of snapshotting, thanks to the 
efficiency and speed of data ingestion of LeanXcale, snapshotting can be performed daily instead of 
weekly since load processes that takes days are reduced to minutes. But snapshotting can be 
substituted by operational database offloading thanks to the scalability and speed of ingestion of 
LeanXcale. The main benefit is that data freshness changes from weekly to real-time. This speed in 
ingestion is achieved thanks to LeanXcale capability of ingesting and querying data with the same 
efficiency independently of the dataset size. This is achieved by means of bidimensional 
partitioning. The bidimensional partitioning exploits the timestamp in the key of historical data to 
partition tables on a second dimension. Tables in LeanXcale are partitioned horizontally through 
the primary key. But then, they are automatically split on the time dimension (or an auto-
increment key, whatever is available) to guarantee that the table partition fits in memory and thus, 
the load becomes CPU bound and thus, very fast. Traditional SQL databases get slower as data 
grows due to the B+ tree used to store data becomes bigger in both terms of number of levels and 
number of nodes. LeanXcale thanks to bi-dimensional partitioning keeps the time to ingest data 
constant. Queries are also speeded up thanks to intra-operator parallelization of all algebraic 
operators below joins.  
 
 

5. Operational database offloading. 
 
One of the main limitations of the operational database offloading is the fraction of data offloaded 
to a single database. Typically, this approach is performed with mainframes that can process very 
high workloads that soon overload other operational databases with much more limited capacity 
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and incapable of scaling. Again by relying on LeanXcale, INFINITECH will overcome these limitations. 
LeanXcale can even support to full set of changes performed over the mainframe thanks to its 
scalability so it does not set any limitation on the dataset size and rate of data updates/inserts over 
this dataset.  
 
 

6. Detail-aggregate view splitting. 
 
In INFINITECH this pattern is totally removed because it is not needed anymore. By taking 
advantage of its declarative real time analytical framework and the so called online aggregates 
developed under the scope of T5.3, aggregate tables are built incrementally as base data is 
inserted. This implies to increase the cost of ingestion, but since LeanXcale is more than one order 
of magnitude more efficient than the market leader, it means that it can still ingest the data more 
efficiently despite the online aggregation, but then, recurrent aggregation analytical queries 
become costless since they only have to read a single row or a bunch of rows to provide the answer 
thanks to the fact that each aggregation has been already computed incrementally. 
 
 

7. Database sharding.  
 
Database sharding is not needed in INFINITECH thanks to the linear scalability of its INFINISTORE. 
Thus, what before required programmatically splitting the data ingestion and data queries across 
independent database instances, now is not needed anymore. LeanXcale is able to scale out 
linearly to hundreds of nodes. 
 
 

8. In-memory application aggregations. 
 
In INFINITECH, in-memory application aggregations are not needed anymore removing all the 
problems around them like the loss of data in the advent of failures and what is more all the 
development and maintenance cost of the code required to perform the in-memory aggregations. 
Not only that, in-memory aggregations work as far they can be computed in a single node, when 
multiple nodes are required they become extremely complex and in most cases out of reach of 
technical teams. In INFINITECH the online aggregates from LeanXcale will be leveraged to compute 
the aggregations for recurrent aggregation queries. LeanXcale keeps internally the relationship 
between tables (called parent tables) and aggregate tables built from the inserts in these tables 
(called child aggregate tables). When aggregation queries are issued, the query optimizer has been 
enriched with new rules to automatically detect which aggregations on the parent table can be 
accelerated by using the aggregations in the child aggregate table. This results in transparent 
improvement of all aggregations in the parent table by simply declaring a child aggregate table 
(obviously of the ones that can exploit the child table aggregates). More information can be found 
at the relevant D5.4 and D5.5 deliverables (“Framework for Declarative and Configurable 
Analytics”)/ 
 
 

9. Federated aggregations. 
 
Federated aggregations share the motivation of in-memory aggregations but basically enable them 
to extend to a multiple set of nodes. As with in-memory application aggregations, INFINITECH fully 
solves the problem in a trial way by relying on its online aggregates.  
 

10. Streaming data and data at rest. 
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Several applications require to combine streaming data with data at rest. In INFINITECH, these 
applications will be addressed by using different mechanisms. When streaming data needs to be 
correlated with persistent data it will be attained by means of the integration of INFINISTORE with 
Flink. When streaming data needs to produce a persistent output, it will also be addressed by 
means of the Flink and INFINISTORE integration. However, sometimes this integration results 
complex because it implies writing queries in two different subsystems and it is complex their 
integration. For this reason, we will develop an integration of SQL with an SQL-like query language 
for streaming data in the form of a query language that integrates both the access to data at rest 
and the access to streaming data. By using a unified language, it becomes trivial via the use of a 
column or set of columns from a streaming tuple in a query performed over the persistent storage 
and similarly, to integrate the output of an SQL query into the output stream of a data streaming 
operator that correlates streaming data with persistent data. 
 

11. NoSQL and SQL data. 
 
As previously discussed, organizations have a myriad of different kinds of database managers that 
include both SQL and NoSQL databases. The main issue is that data stored on each family of data 
stores belongs to a single logical database of the organization and this split is artificial due to the 
technical limitations of different database technologies that prevent from using a single database 
for all kinds of data. In INFINITECH polyglot support will be provided to solve the data pipelines 
across different families of databases. Polyglot data support will enable to query from a common 
endpoint to SQL data stored in LeanXcale or other SQL databases and data stored in key-value data 
stores, wide-column data stores, document-oriented data stores, and graph databases. 

 

Finally, INFINITECH will also integrate the different tools require to support all the data pipelines including 
Change Data Capture (CDC) systems and ETL tools to provide a holistic solution to the automation of data 
pipelining. 
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9 Intelligent Data Pipeline in practice 
In this section we provide insights along with a concrete example of how to make use of the INFINITECH 

Intelligent Data Pipeline, instead of using complex architecture designs as previously presented.  We 

demonstrate how to setup, configure and deploy such a data pipeline in order to move data from an 

operational datastore to INFINISTORE. We envision the scenario that an operational datastore is accepting 

the transactional workload, however, it cannot be used to efficiently execute analytical queries and thus, 

data (or fragments of data) should be migrated either to a data warehouse or to another operational 

datastore. Typically, these use cases are solved by applying architecture designs such as operational 

database offloading or current-historical data splitting. Even if our scenario is limited to these 

architectures, our solution is generic and can be used to implement each type of data pipeline, as the 

datastore to migrate data to or from, is the INFINISTORE, which can be used to solve all the architectures in 

a holistic way.  

In our example, we make use of MySQL datastore that will take the role of the operational database of a 

finance or insurance enterprise. MySQL is widely used and ensures database transactions and provides 

relational query processing capabilities. However, it suffers when it comes to analytics under operational 

workload. Due to this, there is often the need to migrate periodically data to a data warehouse that can be 

used instead for such type of processing. The data migration often takes place as a batch process that takes 

place during night periods that the database is almost idle and takes a lot of time, which can typically be a 

couple of hours. If the process fails during the night, the data warehouse is not updated, as there is no time 

to repeat such a time-consuming process, resulting in lack of data coming from the last day. With the 

INFINITECH data pipeline, we want to send data from the operational datastore to the INFINISTORE when a 

data modification operation takes place. This way, the INFINISTORE will always have fresh data, without 

having to wait for the night when the batch processing takes place. Moreover, as INFINISTORE provides 

Hybrid Transactional and Analytical Processing (HTAP) capabilities, we can offload data to the latter in real-

time, no matter the rate of data ingestion, while at the same time, it can be used for advanced analytical 

processing. This is due to the outcomes of the task T3.1 “Framework for Seamless Data Management and 

HTAP”, with the reader being advised to go through the corresponding report D3.2 “Hybrid 

Transactional/Analytics Processing for Finance and Insurance Applications – II” for more details.  

For the implementation of the INFINITECH Intelligent Pipelines, we rely on the Debezium6 that implements 

the Change Data Capture (CDC) paradigm. Before getting into more details, the following subsection 

provides a general overview of what Debezium can offer. 

 

9.1 Use of Debezium for Change Data Capture 
Debezium is an open source distributed platform that can be used for implementation that relies on the 

change data capture. It provides a set of distributed services that can monitor changes in a database 

schema, capture those changes in a per data-item level, whether these changes are related with an 

insertion, update or delete of a data record, and publishes these changes so that other components can 

react. Other components might be both software and application level components, other datastores and 

steaming processing frameworks. In INFINITECH, we make use of it to i) send data modifications into the 

 
6 https://debezium.io/ 
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INFINISTORE and ii) send data modifications of INFINISTORE to other data processing frameworks. The 

latter will be the case of the Semantic Interoperability engine that is being built under the scope of WP4.  

What Debezium does is that it keeps a transaction log that stores data modification operations that 

happens in a per data item level in the source database, when data is finally committed, and propagates 

this log to different listeners that can react either by triggering specific events, or store the data in a 

persistent storage medium of the target database that listens to this log. That way, it implements the 

change data capture paradigm which allows the user to monitor and capture data changes that takes place 

in the source and send these changes to the target. Typically, the source might be an operational datastore 

and the target a data warehouse. As a result, this approach clearly fits to the scenario that we 

demonstrate. 

According to its official web site, Debezium provides support for data connectivity for a variety of different 

database vendors, such as MySQL database servers, MongoDB replica sets or sharded clusters, PostgreSQL 

servers and SQL Server databases. This allows us to rely on this framework to migrate data from different 

vendors that are dominant in the insurance and finance sector. Moreover, it provides an interface that can 

be used by system developers to create additional connectors to other mediums. In INFINITECH, we have 

developed a connector to allow the interaction with INFINISTORE. 

A typical deployment of Debezium consists of various components that are involved in the data pipeline for 

the change data capture. Typically, a cluster of Kafka brokers as the medium for Debezium to exchange the 

transaction logs among the involved listeners. The Debezium records all the events of data modification 

and stores them as transaction logs in Kafka, from which the application level components or other data 

management system can consume those logs and respond accordingly. Additionally, the deployment 

requires a Debezium connector that monitors the source database. We can have one connector per 

monitoring database. As connector capturers the data changes that happen in the source database, they 

persist the logs into Kafka, and from them, we can retrieve those logs and store the changes into 

INFINISTORE. 

 

9.2 From an operational datastore to INFINISTORE 
One important requirement found in many organizations in finance and insurance sectors is to have an 

instance of an analytical database management system running in parallel with their databases while not 

changing their existing systems. The solution that INFINITECH proposes is to make use of its Intelligent Data 

Pipeline which achieves this is by the implementation of the change data capture, using Debezium. In this 

subsection, we explain how to integrate a MySQL database with INFINISTORE, although this approach is 

generic enough and can be used with other source databases, such as PostgreSQL or MongoDB. 

Following the basic concepts of Debezium that were previously described, the overall architecture is 

depicted inFigure 12. 
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Figure 12: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE 

The overall architecture involves the two databases that need to exchange data modifications via the 

change data capture: the operational datastore of MySQL and the hybrid transactional and analytical 

database of INFINISTORE, which is based on the technology that LeanXcale is implementing under the 

scope of the project. Debezium is the medium to monitor changes in the MySQL side and sends transaction 

logs using a specific connector to Kafka. Kafka is used as the intermediate data queue that persistently 

stored data sent by the Debezium connector and are retrieved to be stored in LeanXcale. This also exploits 

the outcomes of task T3.1 “Framework for Seamless Data Management and HTAP”, and more precisely the 

implementation of the Kafka connector developed there and is being documented in the corresponding 

report D3.2 “Hybrid Transactional/Analytics Processing for Finance and Insurance Applications – II” for 

more details. 

The creation of the components is performed with docker images that include, according to the 

architecture of Debezium, the following: 

• Apache Zookeeper. 

• Apache Kafka. 

• Kafka Connect / Debezium image with the modification of the Kafka Connector for the INFINISTORE 

placed into the corresponding connect directory. 

• An empty MySQL database image into which we perform some create statements. 

• An empty instance of the INFINISTORE into which all changes from MySQL are replicated. 

At this phase of the project, we have not migrated yet our solution to be compliant with the INFINITECH 

way of deployment, as the overall implementation is under validation. Therefore, we make use of the 

docker-compose to configure the deployment and integration of all the involved components. The docker-

compose.yaml that someone can use is the following: 
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version: '2' 

services: 

  zookeeper: 

    image: debezium/zookeeper:1.1 

    ports: 

     - 2181:2181 

     - 2888:2888 

     - 3888:3888 

  kafka: 

    image: harbor.infinitech-h2020.eu/interface/lx-kafka:latest 

    ports: 

     - 9092:9092 

    links: 

     - zookeeper 

    environment: 

     - ZOOKEEPER_CONNECT=zookeeper:2181 

  mysql: 

    image: debezium/example-mysql:1.1 

    ports: 

     - 3306:3306 

    environment: 

     - MYSQL_ROOT_PASSWORD=debezium 

     - MYSQL_USER=mysqluser 

     - MYSQL_PASSWORD=mysqlpw 

  connect: 

    image: debezium/connect:1.1 

    ports: 

     - 8083:8083 

    links: 

     - kafka 

     - mysql 

    environment: 

     - BOOTSTRAP_SERVERS=kafka:9092 

     - GROUP_ID=1 

     - CONFIG_STORAGE_TOPIC=my_connect_configs 

     - OFFSET_STORAGE_TOPIC=my_connect_offsets 

     - STATUS_STORAGE_TOPIC=my_connect_statuses 

 

It is noticed that we make use of a zookeeper instance that is needed by the Debezium, the MySQL 

database that will be the operational database from which will send data modifications to the INFINISTORE, 

the corresponding connector of Debezium that will monitor the MySQL to write the transaction logs and 

finally, the Kafka queue. The reader should also notice that we make use of the Kafka image that is 

provided by the INFINISTORE. 

In order to configure the Debezium connector to monitor the MySQL database and send results to 

INFINISTORE, we need to provide the following configuration file: 

{ 

    "name": "inventory-connector", 

    "config": { 

        "connector.class": "io.debezium.connector.mysql.MySqlConnector", 

        "tasks.max": "1", 

        "database.hostname": "mysql", 

        "database.port": "3306", 

        "database.user": "debezium", 

        "database.password": "dbz", 

        "database.server.id": "184054", 

        "database.server.name": "dbserver1", 

        "database.whitelist": "inventory", 

        "database.history.kafka.bootstrap.servers": "kafka:9092", 

        "database.history.kafka.topic": "schema-changes.inventory", 

    "transforms": "route,unwrap", 
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        "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter", 

        "transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)", 

        "transforms.route.replacement": "$3", 

    "transforms.unwrap.type": "io.debezium.transforms.UnwrapFromEnvelope", 

    "transforms.unwrap.drop.tombstones": "false", 

    "transforms.unwrap.delete.handling.mode": "none" 

    } 

} 

 

This configuration is detailed as explained in the Debezium documentation and is out of the scope of this 

report. However, to provide a brief explanation, it defines a MySQL Connector which will be used, provides 

the hostname and port where the operational database is deployed, the username and password to 

connect, along with information regarding the Kafka queue that will be used to send the transaction logs. It 

is important to also mention that in the MySQL connector, we include two transformations of “transforms”: 

“route,unwrap”. With the transformation route, the connector puts the messages into the topic using the 

table name. With the second transformation, unwrap, the original message is changed to be compatible 

with other connectors, such as the connector provided for INFINISTORE.  Let’s save this configuration in file 

named register-mysql.json. The Debezium connector provides a REST API that can be used to configure it, 

so the following command can actually be used: 

curl -i -X POST -H "Accept:application/json" -H  "Content-Type:application/json" 

http://localhost:8083/connectors/ -d @register-mysql.json 

 

Now we would need to also configure the connector of the INFINISTORE. In our scenario, we will make use 

of the following configuration: 

{ 

     "name": "lx-connector", 

     "config": { 

         "connector.class": "com.leanxcale.connector.kafka.LXSinkConnector", 

         "tasks.max": "1", 

     "topics": "t1", 

         "connection.properties": "lx://lx:9876/db@APP", 

     "auto.create": "true", 

     "delete.enabled": "true", 

     "insert.mode": "upsert", 

     "batch.size": "500", 

     "connection.check.timeout": "20", 

     "sink.connection.mode": "kivi", 

     "sink.transactional": "false", 

     "table.name.format": "t1", 

     "pk.mode": "record_key", 

     “pk.fields” : “id”, 

     "fields.whitelist": "field1,field2" 

     } 

} 

 

In this example, we indicate only one table (t1) in the connector where the table is auto-created at the first 

insert. We can delete rows by setting “delete.enabled”: “true”.  

Similarly, we save the configuration in a file named register-lx.json and we can now configure the connector 

of INFINISTORRE using the REST API of Debezium, with the following command: 

curl -i -X POST -H "Accept:application/json" -H  "Content-Type:application/json" 

http://localhost:8083/connectors/ -d @register-lx.json 
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After having properly configured the Debezium connectors, we can start creating records to the MySQL 

operational data store, and see how everything works in practice. We first need to connect to the container 

of MySQL and we will create a table, containing three fields, and add a data row. The following lines should 

be executed from the MySQL command line client: 

CREATE TABLE t1(id int, field1 int, field2 varchar(10), PRIMARY KEY(id)); 

INSERT INTO t1 VALUES (1, 1, ‘one’); 

 

Taking a look at the logs, we should observe something like the following: 

connect_1    | 2021-07-09 13:39:34,676 INFO   ||  using percentage to target request of new batch 

0.85   [com.leanxcale.txnmgmt.lxinfo.client.TSProvider] 

connect_1    | 2021-07-09 13:39:34,678 WARN   ||  Socket using nagle true   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,680 INFO   ||  LeanXcaleInfoClient initialized on port 58514   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,680 INFO   ||  LeanXcaleInfoClient obtained LXIS instances for 

HA: {}   [com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | kv.Conn[1]: *** no.auth = 1 

connect_1    | kv.Conn[1]: *** no.crypt = 2 

connect_1    | kv.Conn[1]: *** no.flushctlout = 1 

connect_1    | kv.Conn[1]: *** no.npjit = 1 

connect_1    | kv.Conn[1]: *** no.tplfrag = 1 

connect_1    | kv.Conn[1]: *** no.xmbiocuts = 1 

connect_1    | kv.Conn[1]: *** no.dstids = 1 

connect_1    | kv.Conn[1]: *** test.resize = 1 

connect_1    | 2021-07-09 13:39:34,720 INFO   ||  Table 

com.leanxcale.connector.kafka.utils.metadata.TableId@4e29b9 is not registered for the connector. 

Checking db...   [com.leanxcale.connector.kafka.sink.impl.LXWriterImpl] 

connect_1    | 2021-07-09 13:39:34,722 INFO   ||  Table t1 not found. Creating it   

[com.leanxcale.connector.kafka.sink.impl.LXWriterImpl] 

connect_1    | 2021-07-09 13:39:34,740 INFO   ||  Registering table t1 in connector   

[com.leanxcale.connector.kafka.sink.impl.LXWriterImpl] 

connect_1    | 2021-07-09 13:39:34,755 INFO   ||  Closing sessionFactory   

[com.leanxcale.kivi.session.SessionFactory] 

connect_1    | 2021-07-09 13:39:34,756 INFO   ||  Closing socket 58514   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,756 INFO   ||  Disconnecting   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,756 INFO   ||  Remote disconnected   

[com.leanxcale.txnmgmt.lxinfo.client.LXInfoClientPeriodic] 

connect_1    | kv.Conn[1]: metaclientproc aborted by user 

connect_1    | 2021-07-09 13:39:34,757 INFO   ||  Socket closed   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,757 INFO   ||  Closing socket 58514   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:34,758 INFO   ||  Disconnecting   

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient] 

connect_1    | 2021-07-09 13:39:36,496 INFO   ||  Tuples inserted: 0 commited in last 10000 ms   

[com.leanxcale.connector.kafka.insert.impl.CommitLogger] 

connect_1    | 2021-07-09 13:39:36,496 INFO   ||  Tuples deleted: 0 commited in last 10000 ms   

[com.leanxcale.connector.kafka.insert.impl.CommitLogger] 

connect_1    | 2021-07-09 13:39:36,496 INFO   ||  Tuples upserted: 1 commited in last 10000 ms   

[com.leanxcale.connector.kafka.insert.impl.CommitLogger] 

connect_1    | 2021-07-09 13:39:36,496 INFO   ||  Tuples updated: 0 commited in last 10000 ms   

[com.leanxcale.connector.kafka.insert.impl.CommitLogger] 

connect_1    | 2021-07-09 13:39:40,015 INFO   ||  WorkerSourceTask{id=inventory-connector-0} 

Committing offsets   [org.apache.kafka.connect.runtime.WorkerSourceTask] 

connect_1    | 2021-07-09 13:39:40,015 INFO   ||  WorkerSourceTask{id=inventory-connector-0} 

flushing 0 outstanding messages for offset commit   

[org.apache.kafka.connect.runtime.WorkerSourceTask] 

connect_1    | 2021-07-09 13:39:40,022 INFO   ||  WorkerSourceTask{id=inventory-connector-0} 

Finished commitOffsets successfully in 7 ms   [org.apache.kafka.connect.runtime.WorkerSourceTask] 

connect_1    | 2021-07-09 13:39:46,470 INFO   ||  Received 0 records   

[com.leanxcale.connector.kafka.sink.LXSinkTask] 
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connect_1    | 2021-07-09 13:39:46,471 INFO   ||  WorkerSinkTask{id=lx-connector-0} Committing 

offsets asynchronously using sequence number 1: {t1-0=OffsetAndMetadata{offset=1, leaderEpoch=null, 

metadata=''}}   [org.apache.kafka.connect.runtime.WorkerSinkTask] 

 

This shows us that the connector to the INFINISTORE has been triggered when we added a row, and the line 

with bold tells us that 1 record has been upserted to INFINISTORE. If we open an SQL client to the latter, we 

can see that the row has been now added transparently, with id as the primary key, having both fields 

field1, field2 as defied in the register-lx.json configuration file. We can now add records in whatever high 

rate is supported by the source operational datastore and taking benefit of the INFINISTORE capabilities 

developed within the project, we can transparently use the change data capture to implement our Data 

Pipeline and migrate data to INFINISTORE, in real time. 

 

9.3 Use of Debezium for Change Data Capture with Avro 
Serialization 

In this subsection, we continue working with Debezium for change data capture and INFINISTORE, 

configured for a common scenario that a finance organization has a large operational database and 

requires to use operational database offloading or other architecture to migrate data from the operational 

store to another data base management system. We still make use of MySQL as the source database, but 

instead, we configure Avro as the message format instead of JSON. Being a more compact message, it can 

offer significantly improved performance. 

This time, our overall architecture is changed and is depicted inFigure 13. 

 

Figure 13: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE using Avro as data serializer 
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The main difference with the previous architecture is that messages are being serialized using the Avro 

Schema Registry. The latter allows the messages to contain only the data related information and do not 

need to replicate schema every time, which is the cases when sending JSON objects without encryption of 

such tools.  

The new configuration for docker-compose includes the new component schema-registry as a docker 

image:  

version: '2' 

services: 

  zookeeper: 

    image: debezium/zookeeper:$ 

    ports: 

     - 2181:2181 

     - 2888:2888 

     - 3888:3888 

  kafka: 

    image: debezium/kafka:$ 

    ports: 

     - 9092:9092 

    links: 

     - zookeeper 

    environment: 

     - ZOOKEEPER_CONNECT=zookeeper:2181 

  mysql: 

    image: debezium/example-mysql:$ 

    ports: 

     - 3306:3306 

    environment: 

     - MYSQL_ROOT_PASSWORD=debezium 

     - MYSQL_USER=mysqluser 

     - MYSQL_PASSWORD=mysqlpw 

  schema-registry: 

    image: confluentinc/cp-schema-registry 

    ports: 

     - 8181:8181 

     - 8081:8081 

    environment: 

     - SCHEMA_REGISTRY_KAFKASTORE_CONNECTION_URL=zookeeper:2181 

     - SCHEMA_REGISTRY_HOST_NAME=schema-registry 

     - SCHEMA_REGISTRY_LISTENERS=http://schema-registry:8081 

    links: 

     - zookeeper 

  connect: 

    image: debezium/connect:$ 

    ports: 

     - 8083:8083 

    links: 

     - kafka 

     - mysql 

     - schema-registry 

    environment: 

     - BOOTSTRAP_SERVERS=kafka:9092 

     - GROUP_ID=1 

     - CONFIG_STORAGE_TOPIC=my_connect_configs 

     - OFFSET_STORAGE_TOPIC=my_connect_offsets 

     - STATUS_STORAGE_TOPIC=my_connect_statuses 

     - KEY_CONVERTER=io.confluent.connect.avro.AvroConverter 

     - VALUE_CONVERTER=io.confluent.connect.avro.AvroConverter 

     - INTERNAL_KEY_CONVERTER=org.apache.kafka.connect.json.JsonConverter 

     - INTERNAL_VALUE_CONVERTER=org.apache.kafka.connect.json.JsonConverter 
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     - CONNECT_KEY_CONVERTER_SCHEMA_REGISTRY_URL=http://schema-registry:8081 

     - CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL=http://schema-registry:8081  

 

For this example, we use a table with different types of fields: 

CREATE TABLE example ( 

  id INTEGER NOT NULL PRIMARY KEY, 

  name VARCHAR(255) NOT NULL, 

  description VARCHAR(512), 

  weight DOUBLE, 

  date1 TIMESTAMP 

); 

 

Next, the registers are configured. In the source MySQL register, we now include all transformations as well 
as the Avro converter.  

 

{ 

    "name": "inventory-connector", 

    "config": { 

        "connector.class": "io.debezium.connector.mysql.MySqlConnector", 

        "tasks.max": "1", 

        "database.hostname": "mysql", 

        "database.port": "3306", 

        "database.user": "debezium", 

        "database.password": "dbz", 

        "database.server.id": "184054", 

        "database.server.name": "dbserver1", 

        "database.whitelist": "inventory", 

        "database.history.kafka.bootstrap.servers": "kafka:9092", 

        "database.history.kafka.topic": "schema-changes.inventory", 

        "key.converter": "io.confluent.connect.avro.AvroConverter", 

    "key.converter.schemas.enable": "false", 

        "value.converter": "io.confluent.connect.avro.AvroConverter", 

        "key.converter.schema.registry.url": "http://schema-registry:8081", 

        "value.converter.schema.registry.url": "http://schema-registry:8081", 

        "transforms": "route,unwrap,convert_date1", 

        "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter", 

        "transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)", 

        "transforms.route.replacement": "$3", 

        "transforms.unwrap.type": "io.debezium.transforms.UnwrapFromEnvelope", 

        "transforms.unwrap.drop.tombstones": "false", 

        "transforms.unwrap.delete.handling.mode": "none", 

    "transforms.convert_date1.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value", 

        "transforms.convert_date1.target.type": "Timestamp", 

        "transforms.convert_date1.field": "date1", 

        "transforms.convert_date1.format": "yyyy-MM-dd'T'HH:mm:ss'Z'" 

    } 

} 

 

It is important to highlight that in this scenario, we added a new transformation for the Timestamp field in 

order to send data as a Timestamp type instead of a String format. On the other hand, the LeanXcale sink 

register remains simple and we only need to add the new fields of the schema and define the Avro 

Converter: 

{ 

    "name": "lx-connector", 

    "config": { 

        "connector.class": "com.leanxcale.connector.kafka.LXSinkConnector", 

        "tasks.max": "1", 

    "topics": "example", 
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        "connection.url": "lx://lx:9876", 

        "connection.user": "APP", 

        "connection.password": "APP", 

        "connection.database": "db", 

    "auto.create": "true", 

    "delete.enabled": "true", 

    "insert.mode": "upsert", 

    "batch.size": "500", 

    "connection.check.timeout": "20", 

    "sink.connection.mode": "kivi", 

    "sink.transactional": "false", 

    "table.name.format": "$", 

    "pk.mode": "record_key", 

        "key.converter": "io.confluent.connect.avro.AvroConverter", 

    "key.converter.schemas.enable": "false", 

        "value.converter": "io.confluent.connect.avro.AvroConverter", 

        "key.converter.schema.registry.url": "http://schema-registry:8081", 

        "value.converter.schema.registry.url": "http://schema-registry:8081" 

    } 

} 

 

We can now repeat the previous demonstrator, start all components via the docker-compose utility, 

register the two connectors and start ingesting data to MySQL. The Debezium connector will monitor for 

data modifications, it will send the corresponding transaction logs to Kafka encrypted by Avro and the Kafka 

connector of INFINISTORE will finally store them. 

What we saw in the last chapters that focused on the intelligent data pipelines, is that after identifying the 

architecture designs used by modern enterprises in the insurance and finance sectors in order to solve 

common problems and to overcome technological barriers, we defined the notion of the INFINITECH 

Intelligent Data Pipelines. The benefit of our approach is the use of the change data capture paradigm 

along with the INFINISTORE as the main database management system that provides a variety of 

innovations that has been described in other deliverables of the project.  

Starting the second phase of the project, we continued by implementing our approach and validating its 

feasibility. As it was mentioned, for our implementation we relied on the Debezium framework that allows 

monitoring data modification in data sources and propagating these changes using transaction logs via 

Kafka queues. We have integrated the INFINISTORE with Debezium to be used as the target data source. 

We have validated the whole implementation using operational datastores as the source, and INFINISTORE 

as the target. With our approach, we benefit from the innovations and prototypes that have been 

developed during the first reporting phase and are already delivered and provided by INFINITECH. These 

are HTAP capabilities of the INFINISTORE, its support for high data ingestion, the Kafka connector and the 

online aggregates.  
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10 Conclusions 
This document reported the work that has been done in the scope of task T3.4 “Automated Parallelization 
of Data Streams and Intelligent Data Pipelining”, whose objective is twofold. First, to provide the enablers 
for deploying intelligent data pipelining, thus having what we call the INFINITECH approach for intelligent 
data pipelines. This will provide a holistic solution that addresses all problems that currently appear in 
different architectural designs used in the modern landscape. At the base are the innovations brought by 
the data management layer of INFINITECH, which solves the problem of data ingestion at very high rates, 
removing the need for database offloading, along with the online aggregates of the declarative real-time 
analytical framework of INFINITECH. This removes all issues of having to pre-calculate the results of 
complex analytical queries, which leads to inconsistent and obsolete results. The integration of 
INFINISTORE with Apache Flink, as part of the work has been done under the scope of T3.3 “Integrated 
Querying of Streaming Data and Data at Rest” and the integration with tools for Change Data Capture (CDC) 
that has been done under the scope of this task, enables the deployment of such intelligent data pipelines.   

The second objective of task T3.4 is to provide the means for enabling automated parallelization of data 
streams, allowing to dynamically scale out individual operators that formulate a data stream in order to 
cope with diverse incoming workloads. Current solutions allow static deployments of stateful multiple 
operators, but once deployed, they cannot be scaled out. Our design allows operators to save and load 
their state, which allows them to shut down existing deployments and redeploy them increasing their 
instances, while transmitting the state of the formers to the new ones, using the core background 
technology of a realization engine. The use of Kubernetes as the underlying container-orchestration system 
for automated deployments allows to programmatically integrate the Apache Flink clusters deployment 
with the realization engine, in order for our novel operators to allow the configuration of the transmission 
of the state across those clusters. 

At the first phase of the project, the main focus was given in implementing and delivering the baseline 
technologies that will create the innovation and break through the current barriers of modern 
organizations that require real-time processing and analytics over multiple data sources (either static at-
rest or streaming and in-flight). That is the HTAP provision, which enables analytical query processing over  
live operational data without the need to move snapshots of a dataset to a data warehouse, the capability 
of the data management layer to allows for high rate data ingestion via its dual interface, its polyglot 
extensions that allows query processing over federated datastores and finally, the online aggregates using 
declarative scripting language, ensuring data consistency at the same time in terms of database 
transactions. As all these technologies have been incorporated into the INFINISTORE, the integration of the 
latter with Apache Flink as the baseline technology for the INFINITECH streaming processing framework 
was the second necessity. The automation of its deployment using container-orchestration frameworks 
now allows the automated parallelization of the data streams, which is the second target objective of this 
task. The delivery of those fundamental pillars was the primary focus during the first phase of the project, 
with the first prototypes being now already available.  

Moreover, during this first phase of the project, an intensive analysis of the state-of-the-art of streaming 
processing frameworks took place as well, allowing us to identify the current architectural designs of the 
modern landscape, along with their inherit barriers. After conducting this analysis, we defined the vision of 
the outcomes of this task, which gave valuable input to the rest of the tasks related with the data 
management activities of INFINITECH and more precisely, T3.1, T3.2, T3.3 and T5.3. As these tasks have 
been progressed and the first prototypes have been already delivered, we were then in a position to start 
the implementation of our holistic solution in what we call the INFINITECH approach for intelligent data 
pipelines. Additionally, we provided a thorough analysis of how the innovations developed so far will solve 
all aforementioned barriers of current architectural decisions. Moreover, the design on how to allow the 
automated parallelization of data streams has been included in this report. Our design allows to 
dynamically scale out individual operators of the data stream, transferring the current state of the 
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deployed Flink cluster to the new ones, thus, removing the barrier of having to rely on static deployments 
that cannot cope with diverse workloads in real time.  

Having the basic pillars and design in place, during the second phase of the project task T3.4, we provided 
our implementation of our INFINITECH Data Pipelines. We validated our approach by using the change data 
capture paradigm to transparently move data from external datastores that can be considered as sources 
to the INFINISTORE. We utilized a commonly used commercial operational datastore as the source and we 
setup and deployed the intelligent data pipeline so that data ingested in the operational data store can be 
stored and retrieved from the INFINISTORE. That way, we allow the data analysts and application 
developers to benefit from exploiting the innovations developed within INFINITECH and integrated into its 
data management system, in order to avoid the need for hybrid and complex architectures. As we saw from 
our analysis, to maintain such architectures that involve numerous and heterogeneous database systems 
can be a hard task while on the same time, all different approaches come with their inherit drawbacks and 
technological obstacles. 

Finally, at the last phase of the project task T3.4, the focus was now given on the automatic parallelization 
of the data streams. Having studied the state-of-the-art implementations for streaming financial data and 
generating a synthetic dataset for validation purposes, we implemented our FinFlink library, to be used 
with Apache Flink that can calculate a variety of different technical indicators useful for the finance sector. 
We validated the scalability of our implementation and by integrating it with the realization engine brought 
by the University of Glasgow, we are now well-placed to provide elastic and automatic parallelization of the 
data steams, validated by our financial use cases and datasets. 

 

Table 1: Conclusions (TASK Objectives with Deliverable achievements) 

Objectives Comment 

deliver an enabler for the 
parallelization of streaming 
engines, notably stateful 
streaming engines based on SDGs 

The proposed solution, the FinFlink library is the enabler for the 
parallelization of streaming operators for FinTech datasets, while we 
have validated its scalability and its ability for automatic 
parallelization. The use of Apache Flink as the core technology allows 
the data users to express their operators on SDGs. 

provide an intelligent data 
pipelining solution 

We have implemented the Change Data Capture paradigm with the 
use of the Debezium framework for the implementation of the 
INFINITECH intelligent data pipelining solution. A demonstration of its 
use is also included in this document 

 

 

Table 2: Conclusions – (map TASK KPI with Deliverable achievements) 

KPI Comment 

Increase in parallelization of 
stateful analytics 

Target Value> = 100% 

The FinFlink library is designed to be linearly (up to a certain point) 
scalable and has been already integrated with the realization engine 
for the automation of the deployment of the scalable operators. 
Therefore, the INFINITECH solution for streaming processing can be 
fully parallelized and in automated manner, thus it can be considered 
fully elastic. 

 


